import gradio as gr import rembg from rembg import remove, new_session from PIL import Image import numpy as np import logging import time # Set up logging logging.basicConfig(level=logging.INFO) # Log the version of rembg logging.info(f"rembg version: {rembg.__version__}") # Define model options with separate names and descriptions MODEL_OPTIONS = { "": "Select a model", "u2net": "A pre-trained model for general use cases (default)", "isnet-general-use": "A new pre-trained model for general use cases", "isnet-anime": "High-accuracy segmentation for anime characters", "silueta": "A reduced-size version of u2net (43MB)", # "sam_prompt": "A pre-trained model for any use case (Segment Anything Model)", # remove sam model "unet": "Lightweight version of u2net model", "u2netp": "A lightweight version of u2net model", "u2net_human_seg": "A pre-trained model for human segmentation", "u2net_cloth_seg": "A pre-trained model for cloth parsing in human portraits", } def hex_to_rgba(hex_color): hex_color = hex_color.lstrip('#') if len(hex_color) == 6: hex_color += 'FF' # Add full opacity if no alpha is provided return tuple(int(hex_color[i:i + 2], 16) for i in (0, 2, 4, 6)) def remove_background(input_image, bg_color, model_choice, alpha_matting, post_process_mask, only_mask): try: # Extract the model name from the choice model_name = model_choice.split(' | ')[0] if model_choice else "" # Set up the session with the chosen model, or None if no model is selected session = new_session(model_name) if model_name else None # Convert hex color to RGBA tuple bg_color_rgba = hex_to_rgba(bg_color) if bg_color else None # Prepare additional options remove_kwargs = { "session": session, "bgcolor": bg_color_rgba if bg_color_rgba else None, "alpha_matting": alpha_matting, "post_process_mask": post_process_mask, "only_mask": only_mask } # Add alpha matting parameters if enabled if alpha_matting: remove_kwargs.update({ "alpha_matting": True, "alpha_matting_foreground_threshold": 270, "alpha_matting_background_threshold": 20, "alpha_matting_erode_size": 11 }) logging.info(f'Model name={model_name}') logging.info(remove_kwargs) # Convert PIL Image to numpy array input_array = np.array(input_image) # Use the remove function if session or bg_color_rgba: output_array = remove(input_array, **{k: v for k, v in remove_kwargs.items() if v is not None}) else: output_array = remove(input_array) # Use the default remove function logging.info("Background removed") # Convert numpy array back to PIL Image output_image = Image.fromarray(output_array) # Convert to RGB mode if necessary if not only_mask and output_image.mode != 'RGB': output_image = output_image.convert('RGB') logging.info("Converted to RGB mode") # Save the output image to a temporary file # Generate a unique timestamp for the output file name timestamp = time.strftime("%Y%m%d-%H%M%S") output_path = f"output_remove_background_{timestamp}.png" output_image.save(output_path) logging.info(f"Saved output image {output_path}") return output_image, output_path except Exception as e: logging.error(f"An error occurred: {e}") return None, None examples = [ ['scifi_man1.jpg'] ] # Gradio interface iface = gr.Interface( fn=remove_background, inputs=[ gr.Image(type="pil"), gr.ColorPicker(label="Background Color", value=None), gr.Dropdown( choices=[""] + [f"{k} | {v}" for k, v in MODEL_OPTIONS.items() if k != ""], label="Model Selection", value="", type="value" ), gr.Checkbox(label="Enable Alpha Matting", value=False), gr.Checkbox(label="Post-Process Mask (post process the mask to get better results)", value=False), gr.Checkbox(label="Only Return Mask ", value=False) ], outputs=[ gr.Image(type="pil", label="Output Image"), gr.File(label="Download the output image") ], examples=examples, title="Advanced Background Remover v2.7", description="Upload an image to remove the background. Customize the result with different options, including background color, model selection, alpha matting, and more.", allow_flagging="never", ) if __name__ == "__main__": iface.launch()