|
import gradio as gr |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") |
|
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2") |
|
|
|
def eval_text(text): |
|
|
|
text = "Eres un experto en lenguaje claro. Evalúa el texto siguiente y di si es muy claro, claro o poco claro. El texto es este: " + text |
|
input_ids = tokenizer.encode(text, return_tensors="pt") |
|
|
|
|
|
out = model.generate( |
|
input_ids, |
|
min_length=100, |
|
max_length=750, |
|
eos_token_id=5, |
|
pad_token_id=1, |
|
top_k=10, |
|
top_p=0.0, |
|
no_repeat_ngram_size=5 |
|
) |
|
|
|
|
|
generated_text = list(map(tokenizer.decode, out))[0] |
|
print(generated_text) |
|
|
|
|
|
return(f"Result: {generation[0]['generated_text']}") |
|
|
|
|
|
demo = gr.Interface(fn=eval_text, inputs="text", outputs="text", title="microsoft/phi-2") |
|
|
|
demo.launch(share=True) |