Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,12 @@ import gradio as gr
|
|
3 |
# Load model directly
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
7 |
-
model = AutoModelForCausalLM.from_pretrained("
|
8 |
|
9 |
def eval_text(text):
|
10 |
# Encode the input text
|
|
|
11 |
input_ids = tokenizer.encode(text, return_tensors="pt")
|
12 |
|
13 |
# Generate text
|
@@ -30,6 +31,6 @@ def eval_text(text):
|
|
30 |
return(f"Result: {generation[0]['generated_text']}")
|
31 |
|
32 |
|
33 |
-
demo = gr.Interface(fn=eval_text, inputs="text", outputs="text", title="
|
34 |
|
35 |
demo.launch(share=True)
|
|
|
3 |
# Load model directly
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
|
8 |
|
9 |
def eval_text(text):
|
10 |
# Encode the input text
|
11 |
+
text = "Eres un experto en lenguaje claro. Evalúa el texto siguiente y di si es muy claro, claro o poco claro. El texto es este: " + text
|
12 |
input_ids = tokenizer.encode(text, return_tensors="pt")
|
13 |
|
14 |
# Generate text
|
|
|
31 |
return(f"Result: {generation[0]['generated_text']}")
|
32 |
|
33 |
|
34 |
+
demo = gr.Interface(fn=eval_text, inputs="text", outputs="text", title="microsoft/phi-2")
|
35 |
|
36 |
demo.launch(share=True)
|