from transformers import GPT2LMHeadModel, GPT2Tokenizer import gradio as gr # Load the pre-trained model and tokenizer tokenizer = GPT2Tokenizer.from_pretrained("sberbank-ai/mGPT") model = GPT2LMHeadModel.from_pretrained("sberbank-ai/mGPT") def eval_aguila(text): # Encode the input text input_ids = tokenizer.encode(text, return_tensors="pt") # Generate text out = model.generate( input_ids, min_length=100, max_length=100, eos_token_id=5, pad_token_id=1, top_k=10, top_p=0.0, no_repeat_ngram_size=5 ) # Decode the generated output generated_text = list(map(tokenizer.decode, out))[0] print(generated_text) return(f"Result: {generation[0]['generated_text']}") demo = gr.Interface(fn=lecturabilidad, inputs="text", outputs="text", title="Mixtral") demo.launch(share=True)