import gradio as gr # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2") def eval_text(text): # Encode the input text text = "Eres un experto en lenguaje claro. EvalĂșa el texto siguiente y di si es muy claro, claro o poco claro. El texto es este: " + text input_ids = tokenizer.encode(text, return_tensors="pt") # Generate text out = model.generate( input_ids, min_length=100, max_length=100, eos_token_id=5, pad_token_id=1, top_k=10, top_p=0.0, no_repeat_ngram_size=5 ) # Decode the generated output generated_text = list(map(tokenizer.decode, out))[0] print(generated_text) return(f"Result: {generation[0]['generated_text']}") demo = gr.Interface(fn=eval_text, inputs="text", outputs="text", title="microsoft/phi-2") demo.launch(share=True)