File size: 1,064 Bytes
b9e397f
d4caf59
09780df
1bc78de
09780df
b28c9c0
 
d4caf59
09780df
 
 
d4caf59
bac290c
b9e397f
 
fd69caf
b9e397f
 
bac290c
b9e397f
 
 
09780df
 
 
 
 
 
 
 
 
 
 
 
 
b9e397f
 
 
 
 
e857c72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
from PIL import Image
from groq import Groq
import os

st.image('endesa.jpeg', caption="", use_column_width=False)
st.image('calamo.png', caption="", use_column_width=False)

client = Groq(
    api_key=os.environ.get("GROQ_API_KEY"),
)
# Rest of your Streamlit app
st.write("# Inicio")

# Other content of your app
st.title("plAIn")
# Add more components here
# Create a text input widget
user_input = st.text_input('Pega tu texto:', '')

# Define a function to process the input
def process_text(input_text):
    prompt = "Eres un experto en lenguaje claro. Evalúa la calidad del lenguaje de este texto:"
    input = prompt + text

    chat_completion = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": input,
        }
    ],
    model="mixtral-8x7b-32768",
)
    return (chat_completion.choices[0].message.content)

# Call the function with the user input
processed_output = process_text(user_input)

# Display the processed output
st.write('Texto procesado:', processed_output)