File size: 2,127 Bytes
2cb9dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from openai import AsyncOpenAI
import logging
from typing import List, Dict
import pandas as pd
import asyncio
from src.api.exceptions import OpenAIError

# Set up structured logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


class EmbeddingService:
    def __init__(
        self,
        openai_api_key: str,
        model: str = "text-embedding-3-small",
        batch_size: int = 100,
    ):
        self.client = AsyncOpenAI(api_key=openai_api_key)
        self.model = model
        self.batch_size = batch_size

    async def get_embedding(self, text: str) -> List[float]:
        """Generate embeddings for the given text using OpenAI."""
        text = text.replace("\n", " ")
        try:
            response = await self.client.embeddings.create(
                input=[text], model=self.model
            )
            return response.data[0].embedding
        except Exception as e:
            logger.error(f"Failed to generate embedding: {e}")
            raise OpenAIError(f"OpenAI API error: {e}")

    async def create_embeddings(
        self, df: pd.DataFrame, target_column: str, output_column: str
    ) -> pd.DataFrame:
        """Create embeddings for the target column in the dataset."""
        logger.info("Generating embeddings...")
        batches = [
            df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
        ]
        processed_batches = await asyncio.gather(
            *[
                self._process_batch(batch, target_column, output_column)
                for batch in batches
            ]
        )
        return pd.concat(processed_batches)

    async def _process_batch(
        self, df_batch: pd.DataFrame, target_column: str, output_column: str
    ) -> pd.DataFrame:
        """Process a batch of rows to generate embeddings."""
        embeddings = await asyncio.gather(
            *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
        )
        df_batch[output_column] = embeddings
        return df_batch