Spaces:
Running
Running
amaye15
commited on
Commit
·
494872d
1
Parent(s):
ff94fdb
Feat - Data Format
Browse files
src/api/services/embedding_service.py
CHANGED
@@ -126,7 +126,7 @@ class EmbeddingService:
|
|
126 |
embedding_column: str,
|
127 |
target_column: str,
|
128 |
num_results: int,
|
129 |
-
) -> List
|
130 |
"""
|
131 |
Perform a cosine similarity search between query embeddings and dataset embeddings.
|
132 |
|
@@ -138,7 +138,7 @@ class EmbeddingService:
|
|
138 |
num_results: The number of results to return.
|
139 |
|
140 |
Returns:
|
141 |
-
A
|
142 |
"""
|
143 |
dataset_embeddings = np.array(dataset[embedding_column])
|
144 |
query_embeddings = np.array(query_embeddings)
|
@@ -146,17 +146,17 @@ class EmbeddingService:
|
|
146 |
# Compute cosine similarity
|
147 |
similarities = cosine_similarity(query_embeddings, dataset_embeddings)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
# Get the top-k results for each query
|
150 |
-
|
151 |
-
for i, query_similarities in enumerate(similarities):
|
152 |
top_k_indices = np.argsort(query_similarities)[-num_results:][::-1]
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
"similarity": float(query_similarities[idx]),
|
157 |
-
}
|
158 |
-
for idx in top_k_indices
|
159 |
-
]
|
160 |
-
results.append(top_k_results)
|
161 |
|
162 |
return results
|
|
|
126 |
embedding_column: str,
|
127 |
target_column: str,
|
128 |
num_results: int,
|
129 |
+
) -> Dict[str, List]:
|
130 |
"""
|
131 |
Perform a cosine similarity search between query embeddings and dataset embeddings.
|
132 |
|
|
|
138 |
num_results: The number of results to return.
|
139 |
|
140 |
Returns:
|
141 |
+
A dictionary of lists containing the target column values and their similarity scores.
|
142 |
"""
|
143 |
dataset_embeddings = np.array(dataset[embedding_column])
|
144 |
query_embeddings = np.array(query_embeddings)
|
|
|
146 |
# Compute cosine similarity
|
147 |
similarities = cosine_similarity(query_embeddings, dataset_embeddings)
|
148 |
|
149 |
+
# Initialize the results dictionary
|
150 |
+
results = {
|
151 |
+
target_column: [],
|
152 |
+
"similarity": [],
|
153 |
+
}
|
154 |
+
|
155 |
# Get the top-k results for each query
|
156 |
+
for query_similarities in similarities:
|
|
|
157 |
top_k_indices = np.argsort(query_similarities)[-num_results:][::-1]
|
158 |
+
for idx in top_k_indices:
|
159 |
+
results[target_column].append(dataset[target_column][idx])
|
160 |
+
results["similarity"].append(float(query_similarities[idx]))
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
return results
|