Spaces:
Running
Running
amaye15
commited on
Commit
·
abfb1fb
1
Parent(s):
9bda6d8
Refactor
Browse files- Dockerfile +0 -52
- docker-compose.yml +2 -0
- src/api/models/embedding_models.py +0 -3
- src/api/services/huggingface_service.py +0 -25
- src/main.py +0 -188
Dockerfile
CHANGED
@@ -1,55 +1,3 @@
|
|
1 |
-
# # Stage 1: Build stage
|
2 |
-
# FROM python:3.12-slim as builder
|
3 |
-
|
4 |
-
# # Set environment variables
|
5 |
-
# ENV PYTHONDONTWRITEBYTECODE=1
|
6 |
-
# ENV PYTHONUNBUFFERED=1
|
7 |
-
|
8 |
-
# # Create a non-root user
|
9 |
-
# RUN useradd -m -u 1000 user
|
10 |
-
|
11 |
-
# # Set the working directory
|
12 |
-
# WORKDIR /app
|
13 |
-
|
14 |
-
# # Copy only the requirements file first to leverage Docker cache
|
15 |
-
# COPY --chown=user ./requirements.txt /app/requirements.txt
|
16 |
-
|
17 |
-
# # Install dependencies in a virtual environment
|
18 |
-
# RUN python -m venv /opt/venv
|
19 |
-
# ENV PATH="/opt/venv/bin:$PATH"
|
20 |
-
# RUN pip install --no-cache-dir --upgrade pip && \
|
21 |
-
# pip install --no-cache-dir -r requirements.txt
|
22 |
-
|
23 |
-
# # Copy the rest of the application code
|
24 |
-
# COPY --chown=user . /app
|
25 |
-
|
26 |
-
# # Stage 2: Runtime stage
|
27 |
-
# FROM python:3.12-slim
|
28 |
-
|
29 |
-
# # Create a non-root user
|
30 |
-
# RUN useradd -m -u 1000 user
|
31 |
-
# USER user
|
32 |
-
|
33 |
-
# # Copy the virtual environment from the builder stage
|
34 |
-
# COPY --from=builder /opt/venv /opt/venv
|
35 |
-
# ENV PATH="/opt/venv/bin:$PATH"
|
36 |
-
|
37 |
-
# # Set the working directory
|
38 |
-
# WORKDIR /app
|
39 |
-
|
40 |
-
# # Copy only the necessary files from the builder stage
|
41 |
-
# COPY --from=builder --chown=user /app /app
|
42 |
-
|
43 |
-
# # Expose the port the app runs on
|
44 |
-
# EXPOSE 7860
|
45 |
-
|
46 |
-
# # Health check to ensure the application is running
|
47 |
-
# HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
48 |
-
# CMD curl -f http://localhost:7860/health || exit 1
|
49 |
-
|
50 |
-
# # Command to run the application with hot reloading
|
51 |
-
# CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "7860", "--reload"]
|
52 |
-
|
53 |
# Stage 1: Build stage
|
54 |
FROM python:3.12-slim as builder
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Stage 1: Build stage
|
2 |
FROM python:3.12-slim as builder
|
3 |
|
docker-compose.yml
CHANGED
@@ -16,6 +16,8 @@ services:
|
|
16 |
interval: 30s
|
17 |
timeout: 10s
|
18 |
retries: 3
|
|
|
|
|
19 |
# depends_on:
|
20 |
# - db # If you have a database service, add it here
|
21 |
|
|
|
16 |
interval: 30s
|
17 |
timeout: 10s
|
18 |
retries: 3
|
19 |
+
|
20 |
+
# Could be useful later on
|
21 |
# depends_on:
|
22 |
# - db # If you have a database service, add it here
|
23 |
|
src/api/models/embedding_models.py
CHANGED
@@ -26,9 +26,6 @@ class ReadEmbeddingRequest(BaseModel):
|
|
26 |
# max_concurrent_requests: int = 10
|
27 |
# dataset_name: str = "re-mind/product_type_embedding"
|
28 |
|
29 |
-
from pydantic import BaseModel
|
30 |
-
from typing import Dict, List
|
31 |
-
|
32 |
|
33 |
class UpdateEmbeddingRequest(BaseModel):
|
34 |
dataset_name: str = "re-mind/product_type_embedding"
|
|
|
26 |
# max_concurrent_requests: int = 10
|
27 |
# dataset_name: str = "re-mind/product_type_embedding"
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
class UpdateEmbeddingRequest(BaseModel):
|
31 |
dataset_name: str = "re-mind/product_type_embedding"
|
src/api/services/huggingface_service.py
CHANGED
@@ -47,31 +47,6 @@ class HuggingFaceService:
|
|
47 |
logger.error(f"Failed to read dataset: {e}")
|
48 |
raise DatasetNotFoundError(f"Dataset not found: {e}")
|
49 |
|
50 |
-
# async def update_dataset(
|
51 |
-
# self, dataset_name: str, updates: Dict[str, List]
|
52 |
-
# ) -> Optional[pd.DataFrame]:
|
53 |
-
# """Update a dataset on Hugging Face Hub."""
|
54 |
-
|
55 |
-
# embedding_service = get_embedding_service()
|
56 |
-
|
57 |
-
# try:
|
58 |
-
# df_src = await self.read_dataset(dataset_name)
|
59 |
-
# df_src = Dataset.from_dict(df_src)
|
60 |
-
# df_update = Dataset.from_dict(updates)
|
61 |
-
|
62 |
-
# df = concatenate_datasets(df_src, df_update)
|
63 |
-
|
64 |
-
# # for column, values in updates.items():
|
65 |
-
# # if column in df.columns:
|
66 |
-
# # df[column] = values
|
67 |
-
# # else:
|
68 |
-
# # logger.warning(f"Column '{column}' not found in dataset.")
|
69 |
-
# # await self.push_to_hub(df, dataset_name)
|
70 |
-
# # return df
|
71 |
-
# except Exception as e:
|
72 |
-
# logger.error(f"Failed to update dataset: {e}")
|
73 |
-
# raise DatasetPushError(f"Failed to update dataset: {e}")
|
74 |
-
|
75 |
async def update_dataset(
|
76 |
self,
|
77 |
dataset_name: str,
|
|
|
47 |
logger.error(f"Failed to read dataset: {e}")
|
48 |
raise DatasetNotFoundError(f"Dataset not found: {e}")
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
async def update_dataset(
|
51 |
self,
|
52 |
dataset_name: str,
|
src/main.py
CHANGED
@@ -1,191 +1,3 @@
|
|
1 |
-
# import os
|
2 |
-
# from fastapi import FastAPI, Depends, HTTPException
|
3 |
-
# from fastapi.responses import JSONResponse, RedirectResponse
|
4 |
-
# from fastapi.middleware.gzip import GZipMiddleware
|
5 |
-
# from pydantic import BaseModel
|
6 |
-
# from typing import List, Dict
|
7 |
-
# from src.api.models.embedding_models import (
|
8 |
-
# CreateEmbeddingRequest,
|
9 |
-
# ReadEmbeddingRequest,
|
10 |
-
# UpdateEmbeddingRequest,
|
11 |
-
# DeleteEmbeddingRequest,
|
12 |
-
# )
|
13 |
-
# from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
|
14 |
-
# from src.api.services.embedding_service import EmbeddingService
|
15 |
-
# from src.api.services.huggingface_service import HuggingFaceService
|
16 |
-
# from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError
|
17 |
-
# import pandas as pd
|
18 |
-
# import logging
|
19 |
-
# from dotenv import load_dotenv
|
20 |
-
|
21 |
-
# # Load environment variables
|
22 |
-
# load_dotenv()
|
23 |
-
|
24 |
-
# # Set up structured logging
|
25 |
-
# logging.basicConfig(
|
26 |
-
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
27 |
-
# )
|
28 |
-
# logger = logging.getLogger(__name__)
|
29 |
-
|
30 |
-
# description = """A FastAPI application for similarity search with PostgreSQL and OpenAI embeddings.
|
31 |
-
|
32 |
-
# Direct/API URL:
|
33 |
-
# https://re-mind-similarity-search.hf.space
|
34 |
-
# """
|
35 |
-
|
36 |
-
# # Initialize FastAPI app
|
37 |
-
# app = FastAPI(
|
38 |
-
# title="Similarity Search API",
|
39 |
-
# description=description,
|
40 |
-
# version="1.0.0",
|
41 |
-
# )
|
42 |
-
|
43 |
-
# app.add_middleware(GZipMiddleware, minimum_size=1000)
|
44 |
-
|
45 |
-
|
46 |
-
# # Root endpoint redirects to /docs
|
47 |
-
# @app.get("/")
|
48 |
-
# async def root():
|
49 |
-
# return RedirectResponse(url="/docs")
|
50 |
-
|
51 |
-
|
52 |
-
# # Health check endpoint
|
53 |
-
# @app.get("/health")
|
54 |
-
# async def health_check(db: Database = Depends(get_db)):
|
55 |
-
# try:
|
56 |
-
# is_healthy = await db.health_check()
|
57 |
-
# if not is_healthy:
|
58 |
-
# raise HTTPException(status_code=500, detail="Database is unhealthy")
|
59 |
-
# return {"status": "healthy"}
|
60 |
-
# except HealthCheckError as e:
|
61 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
62 |
-
|
63 |
-
|
64 |
-
# # Dependency to get EmbeddingService
|
65 |
-
# def get_embedding_service() -> EmbeddingService:
|
66 |
-
# return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
67 |
-
|
68 |
-
|
69 |
-
# # Dependency to get HuggingFaceService
|
70 |
-
# def get_huggingface_service() -> HuggingFaceService:
|
71 |
-
# return HuggingFaceService()
|
72 |
-
|
73 |
-
|
74 |
-
# # Endpoint to create embeddings
|
75 |
-
# @app.post("/create_embedding")
|
76 |
-
# async def create_embedding(
|
77 |
-
# request: CreateEmbeddingRequest,
|
78 |
-
# db: Database = Depends(get_db),
|
79 |
-
# embedding_service: EmbeddingService = Depends(get_embedding_service),
|
80 |
-
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
81 |
-
# ):
|
82 |
-
# """
|
83 |
-
# Create embeddings for the target column in the dataset.
|
84 |
-
# """
|
85 |
-
# try:
|
86 |
-
# # Step 1: Query the database
|
87 |
-
# logger.info("Fetching data from the database...")
|
88 |
-
# result = await db.fetch(request.query)
|
89 |
-
# df = pd.DataFrame(result)
|
90 |
-
|
91 |
-
# # Step 2: Generate embeddings
|
92 |
-
# df = await embedding_service.create_embeddings(
|
93 |
-
# df, request.target_column, request.output_column
|
94 |
-
# )
|
95 |
-
|
96 |
-
# # Step 3: Push to Hugging Face Hub
|
97 |
-
# await huggingface_service.push_to_hub(df, request.dataset_name)
|
98 |
-
|
99 |
-
# return JSONResponse(
|
100 |
-
# content={
|
101 |
-
# "message": "Embeddings created and pushed to Hugging Face Hub.",
|
102 |
-
# "dataset_name": request.dataset_name,
|
103 |
-
# "num_rows": len(df),
|
104 |
-
# }
|
105 |
-
# )
|
106 |
-
# except QueryExecutionError as e:
|
107 |
-
# logger.error(f"Database query failed: {e}")
|
108 |
-
# raise HTTPException(status_code=500, detail=f"Database query failed: {e}")
|
109 |
-
# except OpenAIError as e:
|
110 |
-
# logger.error(f"OpenAI API error: {e}")
|
111 |
-
# raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
|
112 |
-
# except DatasetPushError as e:
|
113 |
-
# logger.error(f"Failed to push dataset: {e}")
|
114 |
-
# raise HTTPException(status_code=500, detail=f"Failed to push dataset: {e}")
|
115 |
-
# except Exception as e:
|
116 |
-
# logger.error(f"An error occurred: {e}")
|
117 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
118 |
-
|
119 |
-
|
120 |
-
# # Endpoint to read embeddings
|
121 |
-
# # @app.get("/read_embeddings/{dataset_name}")
|
122 |
-
# @app.post("/read_embeddings")
|
123 |
-
# async def read_embeddings(
|
124 |
-
# request: ReadEmbeddingRequest,
|
125 |
-
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
126 |
-
# ):
|
127 |
-
# """
|
128 |
-
# Read embeddings from a Hugging Face dataset.
|
129 |
-
# """
|
130 |
-
# try:
|
131 |
-
# df = await huggingface_service.read_dataset(request.dataset_name)
|
132 |
-
# return df
|
133 |
-
# except DatasetNotFoundError as e:
|
134 |
-
# logger.error(f"Dataset not found: {e}")
|
135 |
-
# raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
|
136 |
-
# except Exception as e:
|
137 |
-
# logger.error(f"An error occurred: {e}")
|
138 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
139 |
-
|
140 |
-
|
141 |
-
# # Endpoint to update embeddings
|
142 |
-
# @app.post("/update_embeddings")
|
143 |
-
# async def update_embeddings(
|
144 |
-
# request: UpdateEmbeddingRequest,
|
145 |
-
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
146 |
-
# ):
|
147 |
-
# """
|
148 |
-
# Update embeddings in a Hugging Face dataset.
|
149 |
-
# """
|
150 |
-
# try:
|
151 |
-
# df = await huggingface_service.update_dataset(
|
152 |
-
# request.dataset_name, request.updates
|
153 |
-
# )
|
154 |
-
# return {
|
155 |
-
# "message": "Embeddings updated successfully.",
|
156 |
-
# "dataset_name": request.dataset_name,
|
157 |
-
# }
|
158 |
-
# except DatasetPushError as e:
|
159 |
-
# logger.error(f"Failed to update dataset: {e}")
|
160 |
-
# raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
|
161 |
-
# except Exception as e:
|
162 |
-
# logger.error(f"An error occurred: {e}")
|
163 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
164 |
-
|
165 |
-
|
166 |
-
# # Endpoint to delete embeddings
|
167 |
-
# @app.post("/delete_embeddings")
|
168 |
-
# async def delete_embeddings(
|
169 |
-
# request: DeleteEmbeddingRequest,
|
170 |
-
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
171 |
-
# ):
|
172 |
-
# """
|
173 |
-
# Delete embeddings from a Hugging Face dataset.
|
174 |
-
# """
|
175 |
-
# try:
|
176 |
-
# await huggingface_service.delete_dataset(request.dataset_name)
|
177 |
-
# return {
|
178 |
-
# "message": "Embeddings deleted successfully.",
|
179 |
-
# "dataset_name": request.dataset_name,
|
180 |
-
# }
|
181 |
-
# except DatasetPushError as e:
|
182 |
-
# logger.error(f"Failed to delete columns: {e}")
|
183 |
-
# raise HTTPException(status_code=500, detail=f"Failed to delete columns: {e}")
|
184 |
-
# except Exception as e:
|
185 |
-
# logger.error(f"An error occurred: {e}")
|
186 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
187 |
-
|
188 |
-
|
189 |
import os
|
190 |
from fastapi import FastAPI, Depends, HTTPException
|
191 |
from fastapi.responses import JSONResponse, RedirectResponse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from fastapi import FastAPI, Depends, HTTPException
|
3 |
from fastapi.responses import JSONResponse, RedirectResponse
|