Spaces:
Running
Running
amaye15
commited on
Commit
·
cccaa2c
1
Parent(s):
6f2dd4d
Feat - New Endpoint - Similarity Search
Browse files- requirements.txt +2 -1
- src/api/database.py +0 -25
- src/api/models/embedding_models.py +8 -0
- src/api/services/embedding_service.py +44 -129
- src/api/services/huggingface_service.py +5 -104
- src/main.py +47 -251
requirements.txt
CHANGED
@@ -5,4 +5,5 @@ uvicorn
|
|
5 |
fastapi
|
6 |
openai
|
7 |
pandas
|
8 |
-
datasets
|
|
|
|
5 |
fastapi
|
6 |
openai
|
7 |
pandas
|
8 |
+
datasets
|
9 |
+
scikit-learn
|
src/api/database.py
CHANGED
@@ -110,31 +110,6 @@ class Database:
|
|
110 |
with self.lock:
|
111 |
self.pool.append(conn)
|
112 |
|
113 |
-
# async def fetch(self, query: str, *args) -> List[Dict]:
|
114 |
-
# """
|
115 |
-
# Execute a SELECT query and return the results as a list of dictionaries.
|
116 |
-
|
117 |
-
# Args:
|
118 |
-
# query (str): The SQL query to execute.
|
119 |
-
# *args: Query parameters.
|
120 |
-
|
121 |
-
# Returns:
|
122 |
-
# List[Dict]: A list of dictionaries where keys are column names and values are column values.
|
123 |
-
|
124 |
-
# Raises:
|
125 |
-
# QueryExecutionError: If the query execution fails.
|
126 |
-
# """
|
127 |
-
# try:
|
128 |
-
# async with self.get_connection() as conn:
|
129 |
-
# cursor = conn.cursor()
|
130 |
-
# cursor.execute(query, args)
|
131 |
-
# rows = cursor.fetchall()
|
132 |
-
# columns = [desc[0] for desc in cursor.description]
|
133 |
-
# return [dict(zip(columns, row)) for row in rows]
|
134 |
-
# except Pg8000DatabaseError as e:
|
135 |
-
# logger.error(f"Query execution failed: {e}")
|
136 |
-
# raise QueryExecutionError(f"Failed to execute query: {query}") from e
|
137 |
-
|
138 |
async def fetch(self, query: str, *args) -> Dict[str, List]:
|
139 |
"""
|
140 |
Execute a SELECT query and return the results as a dictionary of lists.
|
|
|
110 |
with self.lock:
|
111 |
self.pool.append(conn)
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
async def fetch(self, query: str, *args) -> Dict[str, List]:
|
114 |
"""
|
115 |
Execute a SELECT query and return the results as a dictionary of lists.
|
src/api/models/embedding_models.py
CHANGED
@@ -48,3 +48,11 @@ class EmbedRequest(BaseModel):
|
|
48 |
output_column: str = (
|
49 |
"embedding" # Column to store embeddings (default: "embeddings")
|
50 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
output_column: str = (
|
49 |
"embedding" # Column to store embeddings (default: "embeddings")
|
50 |
)
|
51 |
+
|
52 |
+
|
53 |
+
class SearchEmbeddingRequest(BaseModel):
|
54 |
+
texts: List[str] # List of texts to search for
|
55 |
+
target_column: str # Column to return in the results
|
56 |
+
embedding_column: str # Column containing the embeddings to search against
|
57 |
+
num_results: int # Number of results to return
|
58 |
+
dataset_name: str # Name of the dataset to search in
|
src/api/services/embedding_service.py
CHANGED
@@ -1,137 +1,10 @@
|
|
1 |
-
# from openai import AsyncOpenAI
|
2 |
-
# import logging
|
3 |
-
# from typing import List, Dict, Union
|
4 |
-
# import pandas as pd
|
5 |
-
# import asyncio
|
6 |
-
# from src.api.exceptions import OpenAIError
|
7 |
-
|
8 |
-
# # Set up structured logging
|
9 |
-
# logging.basicConfig(
|
10 |
-
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
11 |
-
# )
|
12 |
-
# logger = logging.getLogger(__name__)
|
13 |
-
|
14 |
-
|
15 |
-
# class EmbeddingService:
|
16 |
-
# def __init__(
|
17 |
-
# self,
|
18 |
-
# openai_api_key: str,
|
19 |
-
# model: str = "text-embedding-3-small",
|
20 |
-
# batch_size: int = 10,
|
21 |
-
# max_concurrent_requests: int = 10, # Limit to 10 concurrent requests
|
22 |
-
# ):
|
23 |
-
# self.client = AsyncOpenAI(api_key=openai_api_key)
|
24 |
-
# self.model = model
|
25 |
-
# self.batch_size = batch_size
|
26 |
-
# self.semaphore = asyncio.Semaphore(max_concurrent_requests) # Rate limiter
|
27 |
-
# self.total_requests = 0 # Total number of requests to process
|
28 |
-
# self.completed_requests = 0 # Number of completed requests
|
29 |
-
|
30 |
-
# async def get_embedding(self, text: str) -> List[float]:
|
31 |
-
# """Generate embeddings for the given text using OpenAI."""
|
32 |
-
# text = text.replace("\n", " ")
|
33 |
-
# try:
|
34 |
-
# async with self.semaphore: # Acquire a semaphore slot
|
35 |
-
# response = await self.client.embeddings.create(
|
36 |
-
# input=[text], model=self.model
|
37 |
-
# )
|
38 |
-
# self.completed_requests += 1 # Increment completed requests
|
39 |
-
# self._log_progress() # Log progress
|
40 |
-
# return response.data[0].embedding
|
41 |
-
# except Exception as e:
|
42 |
-
# logger.error(f"Failed to generate embedding: {e}")
|
43 |
-
# raise OpenAIError(f"OpenAI API error: {e}")
|
44 |
-
|
45 |
-
# async def create_embeddings(
|
46 |
-
# self,
|
47 |
-
# data: Union[pd.DataFrame, List[str]],
|
48 |
-
# target_column: str = None,
|
49 |
-
# output_column: str = "embeddings",
|
50 |
-
# ) -> Union[pd.DataFrame, List[List[float]]]:
|
51 |
-
# """
|
52 |
-
# Create embeddings for either a DataFrame or a list of strings.
|
53 |
-
|
54 |
-
# Args:
|
55 |
-
# data: Either a DataFrame or a list of strings.
|
56 |
-
# target_column: The column in the DataFrame to generate embeddings for (required if data is a DataFrame).
|
57 |
-
# output_column: The column to store embeddings in the DataFrame (default: "embeddings").
|
58 |
-
|
59 |
-
# Returns:
|
60 |
-
# If data is a DataFrame, returns the DataFrame with the embeddings column.
|
61 |
-
# If data is a list of strings, returns a list of embeddings.
|
62 |
-
# """
|
63 |
-
# if isinstance(data, pd.DataFrame):
|
64 |
-
# if not target_column:
|
65 |
-
# raise ValueError("target_column is required when data is a DataFrame.")
|
66 |
-
# return await self._create_embeddings_for_dataframe(
|
67 |
-
# data, target_column, output_column
|
68 |
-
# )
|
69 |
-
# elif isinstance(data, list):
|
70 |
-
# return await self._create_embeddings_for_texts(data)
|
71 |
-
# else:
|
72 |
-
# raise TypeError(
|
73 |
-
# "data must be either a pandas DataFrame or a list of strings."
|
74 |
-
# )
|
75 |
-
|
76 |
-
# async def _create_embeddings_for_dataframe(
|
77 |
-
# self, df: pd.DataFrame, target_column: str, output_column: str
|
78 |
-
# ) -> pd.DataFrame:
|
79 |
-
# """Create embeddings for the target column in the DataFrame."""
|
80 |
-
# logger.info("Generating embeddings for DataFrame...")
|
81 |
-
# self.total_requests = len(df) # Set total number of requests
|
82 |
-
# self.completed_requests = 0 # Reset completed requests counter
|
83 |
-
|
84 |
-
# batches = [
|
85 |
-
# df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
|
86 |
-
# ]
|
87 |
-
# processed_batches = await asyncio.gather(
|
88 |
-
# *[
|
89 |
-
# self._process_batch(batch, target_column, output_column)
|
90 |
-
# for batch in batches
|
91 |
-
# ]
|
92 |
-
# )
|
93 |
-
# return pd.concat(processed_batches)
|
94 |
-
|
95 |
-
# async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]:
|
96 |
-
# """Create embeddings for a list of strings."""
|
97 |
-
# logger.info("Generating embeddings for list of texts...")
|
98 |
-
# self.total_requests = len(texts) # Set total number of requests
|
99 |
-
# self.completed_requests = 0 # Reset completed requests counter
|
100 |
-
|
101 |
-
# batches = [
|
102 |
-
# texts[i : i + self.batch_size]
|
103 |
-
# for i in range(0, len(texts), self.batch_size)
|
104 |
-
# ]
|
105 |
-
# embeddings = []
|
106 |
-
# for batch in batches:
|
107 |
-
# batch_embeddings = await asyncio.gather(
|
108 |
-
# *[self.get_embedding(text) for text in batch]
|
109 |
-
# )
|
110 |
-
# embeddings.extend(batch_embeddings)
|
111 |
-
# return embeddings
|
112 |
-
|
113 |
-
# async def _process_batch(
|
114 |
-
# self, df_batch: pd.DataFrame, target_column: str, output_column: str
|
115 |
-
# ) -> pd.DataFrame:
|
116 |
-
# """Process a batch of rows to generate embeddings."""
|
117 |
-
# embeddings = await asyncio.gather(
|
118 |
-
# *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
|
119 |
-
# )
|
120 |
-
# df_batch[output_column] = embeddings
|
121 |
-
# return df_batch
|
122 |
-
|
123 |
-
# def _log_progress(self):
|
124 |
-
# """Log the progress of embedding generation."""
|
125 |
-
# progress = (self.completed_requests / self.total_requests) * 100
|
126 |
-
# logger.info(
|
127 |
-
# f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
|
128 |
-
# )
|
129 |
-
|
130 |
from openai import AsyncOpenAI
|
131 |
import logging
|
132 |
from typing import List, Dict, Union
|
133 |
from datasets import Dataset
|
134 |
import asyncio
|
|
|
|
|
135 |
from src.api.exceptions import OpenAIError
|
136 |
|
137 |
# Set up structured logging
|
@@ -245,3 +118,45 @@ class EmbeddingService:
|
|
245 |
logger.info(
|
246 |
f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
|
247 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from openai import AsyncOpenAI
|
2 |
import logging
|
3 |
from typing import List, Dict, Union
|
4 |
from datasets import Dataset
|
5 |
import asyncio
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
from src.api.exceptions import OpenAIError
|
9 |
|
10 |
# Set up structured logging
|
|
|
118 |
logger.info(
|
119 |
f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
|
120 |
)
|
121 |
+
|
122 |
+
async def search_embeddings(
|
123 |
+
self,
|
124 |
+
query_embeddings: List[List[float]],
|
125 |
+
dataset: Dataset,
|
126 |
+
embedding_column: str,
|
127 |
+
target_column: str,
|
128 |
+
num_results: int,
|
129 |
+
) -> List[Dict]:
|
130 |
+
"""
|
131 |
+
Perform a cosine similarity search between query embeddings and dataset embeddings.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
query_embeddings: List of embeddings for the query texts.
|
135 |
+
dataset: The dataset to search in.
|
136 |
+
embedding_column: The column in the dataset containing embeddings.
|
137 |
+
target_column: The column to return in the results.
|
138 |
+
num_results: The number of results to return.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
A list of dictionaries containing the target column values and their similarity scores.
|
142 |
+
"""
|
143 |
+
dataset_embeddings = np.array(dataset[embedding_column])
|
144 |
+
query_embeddings = np.array(query_embeddings)
|
145 |
+
|
146 |
+
# Compute cosine similarity
|
147 |
+
similarities = cosine_similarity(query_embeddings, dataset_embeddings)
|
148 |
+
|
149 |
+
# Get the top-k results for each query
|
150 |
+
results = []
|
151 |
+
for i, query_similarities in enumerate(similarities):
|
152 |
+
top_k_indices = np.argsort(query_similarities)[-num_results:][::-1]
|
153 |
+
top_k_results = [
|
154 |
+
{
|
155 |
+
target_column: dataset[target_column][idx],
|
156 |
+
"similarity": float(query_similarities[idx]),
|
157 |
+
}
|
158 |
+
for idx in top_k_indices
|
159 |
+
]
|
160 |
+
results.append(top_k_results)
|
161 |
+
|
162 |
+
return results
|
src/api/services/huggingface_service.py
CHANGED
@@ -1,106 +1,3 @@
|
|
1 |
-
# from datasets import Dataset, load_dataset, concatenate_datasets
|
2 |
-
# from huggingface_hub import HfApi, HfFolder
|
3 |
-
# import logging
|
4 |
-
# import os
|
5 |
-
# from typing import Optional, Dict, List
|
6 |
-
# import pandas as pd
|
7 |
-
# from src.api.services.embedding_service import EmbeddingService
|
8 |
-
# from src.api.exceptions import (
|
9 |
-
# DatasetNotFoundError,
|
10 |
-
# DatasetPushError,
|
11 |
-
# DatasetDeleteError,
|
12 |
-
# )
|
13 |
-
|
14 |
-
# # Set up structured logging
|
15 |
-
# logging.basicConfig(
|
16 |
-
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
17 |
-
# )
|
18 |
-
# logger = logging.getLogger(__name__)
|
19 |
-
|
20 |
-
|
21 |
-
# class HuggingFaceService:
|
22 |
-
# def __init__(self, hf_token: Optional[str] = None):
|
23 |
-
# """Initialize the HuggingFaceService with an optional token."""
|
24 |
-
# self.hf_api = HfApi()
|
25 |
-
# if hf_token:
|
26 |
-
# HfFolder.save_token(hf_token) # Save the token for authentication
|
27 |
-
|
28 |
-
# async def push_to_hub(self, df: pd.DataFrame, dataset_name: str) -> None:
|
29 |
-
# """Push the dataset to Hugging Face Hub."""
|
30 |
-
# try:
|
31 |
-
# logger.info(f"Creating Hugging Face Dataset: {dataset_name}...")
|
32 |
-
# ds = Dataset.from_pandas(df)
|
33 |
-
# ds.push_to_hub(dataset_name)
|
34 |
-
# logger.info(f"Dataset pushed to Hugging Face Hub: {dataset_name}")
|
35 |
-
# except Exception as e:
|
36 |
-
# logger.error(f"Failed to push dataset to Hugging Face Hub: {e}")
|
37 |
-
# raise DatasetPushError(f"Failed to push dataset: {e}")
|
38 |
-
|
39 |
-
# async def read_dataset(self, dataset_name: str) -> Optional[pd.DataFrame]:
|
40 |
-
# """Read a dataset from Hugging Face Hub."""
|
41 |
-
# try:
|
42 |
-
# logger.info(f"Loading dataset from Hugging Face Hub: {dataset_name}...")
|
43 |
-
# ds = load_dataset(dataset_name)
|
44 |
-
# df = ds["train"].to_dict()
|
45 |
-
# return df
|
46 |
-
# except Exception as e:
|
47 |
-
# logger.error(f"Failed to read dataset: {e}")
|
48 |
-
# raise DatasetNotFoundError(f"Dataset not found: {e}")
|
49 |
-
|
50 |
-
# async def update_dataset(
|
51 |
-
# self,
|
52 |
-
# dataset_name: str,
|
53 |
-
# updates: Dict[str, List],
|
54 |
-
# target_column: str,
|
55 |
-
# output_column: str = "embeddings",
|
56 |
-
# ) -> Optional[pd.DataFrame]:
|
57 |
-
# """Update a dataset on Hugging Face Hub by generating embeddings for new data and concatenating it with the existing dataset."""
|
58 |
-
# try:
|
59 |
-
# # Step 1: Load the existing dataset from Hugging Face Hub
|
60 |
-
# logger.info(
|
61 |
-
# f"Loading existing dataset from Hugging Face Hub: {dataset_name}..."
|
62 |
-
# )
|
63 |
-
# existing_ds = await self.read_dataset(dataset_name)
|
64 |
-
# existing_df = pd.DataFrame(existing_ds)
|
65 |
-
|
66 |
-
# # Step 2: Convert the new updates into a DataFrame
|
67 |
-
# logger.info("Converting updates to DataFrame...")
|
68 |
-
# new_df = pd.DataFrame(updates)
|
69 |
-
|
70 |
-
# # Step 3: Generate embeddings for the new data
|
71 |
-
# logger.info("Generating embeddings for the new data...")
|
72 |
-
# embedding_service = EmbeddingService(
|
73 |
-
# openai_api_key=os.getenv("OPENAI_API_KEY")
|
74 |
-
# ) # Get the embedding service
|
75 |
-
# new_df = await embedding_service.create_embeddings(
|
76 |
-
# new_df, target_column, output_column
|
77 |
-
# )
|
78 |
-
|
79 |
-
# # Step 4: Concatenate the existing DataFrame with the new DataFrame
|
80 |
-
# logger.info("Concatenating existing dataset with new data...")
|
81 |
-
# updated_df = pd.concat([existing_df, new_df], ignore_index=True)
|
82 |
-
|
83 |
-
# # Step 5: Push the updated dataset back to Hugging Face Hub
|
84 |
-
# logger.info(
|
85 |
-
# f"Pushing updated dataset to Hugging Face Hub: {dataset_name}..."
|
86 |
-
# )
|
87 |
-
# await self.push_to_hub(updated_df, dataset_name)
|
88 |
-
|
89 |
-
# return updated_df
|
90 |
-
# except Exception as e:
|
91 |
-
# logger.error(f"Failed to update dataset: {e}")
|
92 |
-
# raise DatasetPushError(f"Failed to update dataset: {e}")
|
93 |
-
|
94 |
-
# async def delete_dataset(self, dataset_name: str) -> None:
|
95 |
-
# """Delete a dataset from Hugging Face Hub."""
|
96 |
-
# try:
|
97 |
-
# logger.info(f"Deleting dataset from Hugging Face Hub: {dataset_name}...")
|
98 |
-
# self.hf_api.delete_repo(repo_id=dataset_name, repo_type="dataset")
|
99 |
-
# logger.info(f"Dataset deleted from Hugging Face Hub: {dataset_name}")
|
100 |
-
# except Exception as e:
|
101 |
-
# logger.error(f"Failed to delete dataset: {e}")
|
102 |
-
# raise DatasetDeleteError(f"Failed to delete dataset: {e}")
|
103 |
-
|
104 |
from datasets import Dataset, load_dataset, concatenate_datasets
|
105 |
from huggingface_hub import HfApi, HfFolder
|
106 |
import logging
|
@@ -141,7 +38,11 @@ class HuggingFaceService:
|
|
141 |
"""Read a dataset from Hugging Face Hub."""
|
142 |
try:
|
143 |
logger.info(f"Loading dataset from Hugging Face Hub: {dataset_name}...")
|
144 |
-
dataset = load_dataset(
|
|
|
|
|
|
|
|
|
145 |
return dataset["train"]
|
146 |
except Exception as e:
|
147 |
logger.error(f"Failed to read dataset: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from datasets import Dataset, load_dataset, concatenate_datasets
|
2 |
from huggingface_hub import HfApi, HfFolder
|
3 |
import logging
|
|
|
38 |
"""Read a dataset from Hugging Face Hub."""
|
39 |
try:
|
40 |
logger.info(f"Loading dataset from Hugging Face Hub: {dataset_name}...")
|
41 |
+
dataset = load_dataset(
|
42 |
+
dataset_name,
|
43 |
+
keep_in_memory=True,
|
44 |
+
download_mode="force_redownload",
|
45 |
+
)
|
46 |
return dataset["train"]
|
47 |
except Exception as e:
|
48 |
logger.error(f"Failed to read dataset: {e}")
|
src/main.py
CHANGED
@@ -1,252 +1,3 @@
|
|
1 |
-
# import os
|
2 |
-
# from fastapi import FastAPI, Depends, HTTPException
|
3 |
-
# from fastapi.responses import JSONResponse, RedirectResponse
|
4 |
-
# from fastapi.middleware.gzip import GZipMiddleware
|
5 |
-
# from pydantic import BaseModel
|
6 |
-
# from typing import List, Dict
|
7 |
-
# from src.api.models.embedding_models import (
|
8 |
-
# CreateEmbeddingRequest,
|
9 |
-
# ReadEmbeddingRequest,
|
10 |
-
# UpdateEmbeddingRequest,
|
11 |
-
# DeleteEmbeddingRequest,
|
12 |
-
# EmbedRequest,
|
13 |
-
# )
|
14 |
-
# from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
|
15 |
-
# from src.api.services.embedding_service import EmbeddingService
|
16 |
-
# from src.api.services.huggingface_service import HuggingFaceService
|
17 |
-
# from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError
|
18 |
-
|
19 |
-
# # from src.api.dependency import get_embedding_service, get_huggingface_service
|
20 |
-
# import pandas as pd
|
21 |
-
# import logging
|
22 |
-
# from dotenv import load_dotenv
|
23 |
-
|
24 |
-
# # Load environment variables
|
25 |
-
# load_dotenv()
|
26 |
-
|
27 |
-
# # Set up structured logging
|
28 |
-
# logging.basicConfig(
|
29 |
-
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
30 |
-
# )
|
31 |
-
# logger = logging.getLogger(__name__)
|
32 |
-
|
33 |
-
# description = """A FastAPI application for similarity search with PostgreSQL and OpenAI embeddings.
|
34 |
-
|
35 |
-
# Direct/API URL:
|
36 |
-
# https://re-mind-similarity-search.hf.space
|
37 |
-
# """
|
38 |
-
|
39 |
-
# # Initialize FastAPI app
|
40 |
-
# app = FastAPI(
|
41 |
-
# title="Similarity Search API",
|
42 |
-
# description=description,
|
43 |
-
# version="1.0.0",
|
44 |
-
# )
|
45 |
-
|
46 |
-
# app.add_middleware(GZipMiddleware, minimum_size=1000)
|
47 |
-
|
48 |
-
|
49 |
-
# # Dependency to get EmbeddingService
|
50 |
-
# def get_embedding_service() -> EmbeddingService:
|
51 |
-
# return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
52 |
-
|
53 |
-
|
54 |
-
# # Dependency to get HuggingFaceService
|
55 |
-
# def get_huggingface_service() -> HuggingFaceService:
|
56 |
-
# return HuggingFaceService()
|
57 |
-
|
58 |
-
|
59 |
-
# # Root endpoint redirects to /docs
|
60 |
-
# @app.get("/")
|
61 |
-
# async def root():
|
62 |
-
# return RedirectResponse(url="/docs")
|
63 |
-
|
64 |
-
|
65 |
-
# # Health check endpoint
|
66 |
-
# @app.get("/health")
|
67 |
-
# async def health_check(db: Database = Depends(get_db)):
|
68 |
-
# try:
|
69 |
-
# is_healthy = await db.health_check()
|
70 |
-
# if not is_healthy:
|
71 |
-
# raise HTTPException(status_code=500, detail="Database is unhealthy")
|
72 |
-
# return {"status": "healthy"}
|
73 |
-
# except HealthCheckError as e:
|
74 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
75 |
-
|
76 |
-
|
77 |
-
# # Endpoint to generate embeddings for a list of strings
|
78 |
-
# @app.post("/embed")
|
79 |
-
# async def embed(
|
80 |
-
# request: EmbedRequest,
|
81 |
-
# embedding_service: EmbeddingService = Depends(get_embedding_service),
|
82 |
-
# ):
|
83 |
-
# """
|
84 |
-
# Generate embeddings for a list of strings and return them in the response.
|
85 |
-
# """
|
86 |
-
# try:
|
87 |
-
# # Step 1: Generate embeddings
|
88 |
-
# logger.info("Generating embeddings for list of texts...")
|
89 |
-
# embeddings = await embedding_service.create_embeddings(request.texts)
|
90 |
-
|
91 |
-
# return JSONResponse(
|
92 |
-
# content={
|
93 |
-
# "message": "Embeddings generated successfully.",
|
94 |
-
# "embeddings": embeddings,
|
95 |
-
# "num_texts": len(request.texts),
|
96 |
-
# }
|
97 |
-
# )
|
98 |
-
# except OpenAIError as e:
|
99 |
-
# logger.error(f"OpenAI API error: {e}")
|
100 |
-
# raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
|
101 |
-
# except Exception as e:
|
102 |
-
# logger.error(f"An error occurred: {e}")
|
103 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
104 |
-
|
105 |
-
|
106 |
-
# # Endpoint to create embeddings from a database query
|
107 |
-
# @app.post("/create_embedding")
|
108 |
-
# async def create_embedding(
|
109 |
-
# request: CreateEmbeddingRequest,
|
110 |
-
# db: Database = Depends(get_db),
|
111 |
-
# embedding_service: EmbeddingService = Depends(get_embedding_service),
|
112 |
-
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
113 |
-
# ):
|
114 |
-
# """
|
115 |
-
# Create embeddings for the target column in the dataset.
|
116 |
-
# """
|
117 |
-
# try:
|
118 |
-
# # Step 1: Query the database
|
119 |
-
# logger.info("Fetching data from the database...")
|
120 |
-
# result = await db.fetch(request.query)
|
121 |
-
# df = pd.DataFrame(result)
|
122 |
-
|
123 |
-
# # Step 2: Generate embeddings
|
124 |
-
# df = await embedding_service.create_embeddings(
|
125 |
-
# df, request.target_column, request.output_column
|
126 |
-
# )
|
127 |
-
|
128 |
-
# # Step 3: Push to Hugging Face Hub
|
129 |
-
# await huggingface_service.push_to_hub(df, request.dataset_name)
|
130 |
-
|
131 |
-
# return JSONResponse(
|
132 |
-
# content={
|
133 |
-
# "message": "Embeddings created and pushed to Hugging Face Hub.",
|
134 |
-
# "dataset_name": request.dataset_name,
|
135 |
-
# "num_rows": len(df),
|
136 |
-
# }
|
137 |
-
# )
|
138 |
-
# except QueryExecutionError as e:
|
139 |
-
# logger.error(f"Database query failed: {e}")
|
140 |
-
# raise HTTPException(status_code=500, detail=f"Database query failed: {e}")
|
141 |
-
# except OpenAIError as e:
|
142 |
-
# logger.error(f"OpenAI API error: {e}")
|
143 |
-
# raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
|
144 |
-
# except DatasetPushError as e:
|
145 |
-
# logger.error(f"Failed to push dataset: {e}")
|
146 |
-
# raise HTTPException(status_code=500, detail=f"Failed to push dataset: {e}")
|
147 |
-
# except Exception as e:
|
148 |
-
# logger.error(f"An error occurred: {e}")
|
149 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
150 |
-
|
151 |
-
|
152 |
-
# # Endpoint to read embeddings
|
153 |
-
# @app.post("/read_embeddings")
|
154 |
-
# async def read_embeddings(
|
155 |
-
# request: ReadEmbeddingRequest,
|
156 |
-
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
157 |
-
# ):
|
158 |
-
# """
|
159 |
-
# Read embeddings from a Hugging Face dataset.
|
160 |
-
# """
|
161 |
-
# try:
|
162 |
-
# df = await huggingface_service.read_dataset(request.dataset_name)
|
163 |
-
# return df
|
164 |
-
# except DatasetNotFoundError as e:
|
165 |
-
# logger.error(f"Dataset not found: {e}")
|
166 |
-
# raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
|
167 |
-
# except Exception as e:
|
168 |
-
# logger.error(f"An error occurred: {e}")
|
169 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
170 |
-
|
171 |
-
|
172 |
-
# # Endpoint to update embeddings
|
173 |
-
# # @app.post("/update_embeddings")
|
174 |
-
# # async def update_embeddings(
|
175 |
-
# # request: UpdateEmbeddingRequest,
|
176 |
-
# # huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
177 |
-
# # ):
|
178 |
-
# # """
|
179 |
-
# # Update embeddings in a Hugging Face dataset.
|
180 |
-
# # """
|
181 |
-
# # try:
|
182 |
-
# # df = await huggingface_service.update_dataset(
|
183 |
-
# # request.dataset_name, request.updates
|
184 |
-
# # )
|
185 |
-
# # return {
|
186 |
-
# # "message": "Embeddings updated successfully.",
|
187 |
-
# # "dataset_name": request.dataset_name,
|
188 |
-
# # }
|
189 |
-
# # except DatasetPushError as e:
|
190 |
-
# # logger.error(f"Failed to update dataset: {e}")
|
191 |
-
# # raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
|
192 |
-
# # except Exception as e:
|
193 |
-
# # logger.error(f"An error occurred: {e}")
|
194 |
-
# # raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
195 |
-
|
196 |
-
|
197 |
-
# @app.post("/update_embeddings")
|
198 |
-
# async def update_embeddings(
|
199 |
-
# request: UpdateEmbeddingRequest,
|
200 |
-
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
201 |
-
# ):
|
202 |
-
# """
|
203 |
-
# Update embeddings in a Hugging Face dataset by generating embeddings for new data and concatenating it with the existing dataset.
|
204 |
-
# """
|
205 |
-
# try:
|
206 |
-
# # Call the update_dataset method to generate embeddings, concatenate, and push the updated dataset
|
207 |
-
# updated_df = await huggingface_service.update_dataset(
|
208 |
-
# request.dataset_name,
|
209 |
-
# request.updates,
|
210 |
-
# request.target_column,
|
211 |
-
# request.output_column,
|
212 |
-
# )
|
213 |
-
|
214 |
-
# return {
|
215 |
-
# "message": "Embeddings updated successfully.",
|
216 |
-
# "dataset_name": request.dataset_name,
|
217 |
-
# "num_rows": len(updated_df),
|
218 |
-
# }
|
219 |
-
# except DatasetPushError as e:
|
220 |
-
# logger.error(f"Failed to update dataset: {e}")
|
221 |
-
# raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
|
222 |
-
# except Exception as e:
|
223 |
-
# logger.error(f"An error occurred: {e}")
|
224 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
225 |
-
|
226 |
-
|
227 |
-
# # Endpoint to delete embeddings
|
228 |
-
# @app.post("/delete_embeddings")
|
229 |
-
# async def delete_embeddings(
|
230 |
-
# request: DeleteEmbeddingRequest,
|
231 |
-
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
232 |
-
# ):
|
233 |
-
# """
|
234 |
-
# Delete embeddings from a Hugging Face dataset.
|
235 |
-
# """
|
236 |
-
# try:
|
237 |
-
# await huggingface_service.delete_dataset(request.dataset_name)
|
238 |
-
# return {
|
239 |
-
# "message": "Embeddings deleted successfully.",
|
240 |
-
# "dataset_name": request.dataset_name,
|
241 |
-
# }
|
242 |
-
# except DatasetPushError as e:
|
243 |
-
# logger.error(f"Failed to delete columns: {e}")
|
244 |
-
# raise HTTPException(status_code=500, detail=f"Failed to delete columns: {e}")
|
245 |
-
# except Exception as e:
|
246 |
-
# logger.error(f"An error occurred: {e}")
|
247 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
248 |
-
|
249 |
-
|
250 |
import os
|
251 |
from fastapi import FastAPI, Depends, HTTPException
|
252 |
from fastapi.responses import JSONResponse, RedirectResponse
|
@@ -260,6 +11,7 @@ from src.api.models.embedding_models import (
|
|
260 |
UpdateEmbeddingRequest,
|
261 |
DeleteEmbeddingRequest,
|
262 |
EmbedRequest,
|
|
|
263 |
)
|
264 |
from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
|
265 |
from src.api.services.embedding_service import EmbeddingService
|
@@ -363,6 +115,10 @@ async def create_embedding(
|
|
363 |
Create embeddings for the target column in the dataset.
|
364 |
"""
|
365 |
try:
|
|
|
|
|
|
|
|
|
366 |
# Step 1: Query the database
|
367 |
logger.info("Fetching data from the database...")
|
368 |
result = await db.fetch(request.query)
|
@@ -371,8 +127,6 @@ async def create_embedding(
|
|
371 |
|
372 |
dataset = Dataset.from_dict(result)
|
373 |
|
374 |
-
embedding_service.batch_size = request.batch_size
|
375 |
-
|
376 |
# Step 2: Generate embeddings
|
377 |
dataset = await embedding_service.create_embeddings(
|
378 |
dataset, request.target_column, request.output_column
|
@@ -474,3 +228,45 @@ async def delete_embeddings(
|
|
474 |
except Exception as e:
|
475 |
logger.error(f"An error occurred: {e}")
|
476 |
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from fastapi import FastAPI, Depends, HTTPException
|
3 |
from fastapi.responses import JSONResponse, RedirectResponse
|
|
|
11 |
UpdateEmbeddingRequest,
|
12 |
DeleteEmbeddingRequest,
|
13 |
EmbedRequest,
|
14 |
+
SearchEmbeddingRequest,
|
15 |
)
|
16 |
from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
|
17 |
from src.api.services.embedding_service import EmbeddingService
|
|
|
115 |
Create embeddings for the target column in the dataset.
|
116 |
"""
|
117 |
try:
|
118 |
+
embedding_service.model = request.model
|
119 |
+
embedding_service.batch_size = request.batch_size
|
120 |
+
# embedding_service.max_concurrent_requests = request.max_concurrent_requests
|
121 |
+
|
122 |
# Step 1: Query the database
|
123 |
logger.info("Fetching data from the database...")
|
124 |
result = await db.fetch(request.query)
|
|
|
127 |
|
128 |
dataset = Dataset.from_dict(result)
|
129 |
|
|
|
|
|
130 |
# Step 2: Generate embeddings
|
131 |
dataset = await embedding_service.create_embeddings(
|
132 |
dataset, request.target_column, request.output_column
|
|
|
228 |
except Exception as e:
|
229 |
logger.error(f"An error occurred: {e}")
|
230 |
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
231 |
+
|
232 |
+
|
233 |
+
@app.post("/search_embedding")
|
234 |
+
async def search_embedding(
|
235 |
+
request: SearchEmbeddingRequest,
|
236 |
+
embedding_service: EmbeddingService = Depends(get_embedding_service),
|
237 |
+
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
238 |
+
):
|
239 |
+
"""
|
240 |
+
Search for similar texts in a dataset using embeddings.
|
241 |
+
"""
|
242 |
+
try:
|
243 |
+
# Step 1: Generate embeddings for the query texts
|
244 |
+
logger.info("Generating embeddings for query texts...")
|
245 |
+
query_embeddings = await embedding_service.create_embeddings(request.texts)
|
246 |
+
|
247 |
+
# Step 2: Load the dataset from Hugging Face Hub
|
248 |
+
logger.info(f"Loading dataset from Hugging Face Hub: {request.dataset_name}...")
|
249 |
+
dataset = await huggingface_service.read_dataset(request.dataset_name)
|
250 |
+
|
251 |
+
# Step 3: Perform cosine similarity search
|
252 |
+
logger.info("Performing cosine similarity search...")
|
253 |
+
results = await embedding_service.search_embeddings(
|
254 |
+
query_embeddings,
|
255 |
+
dataset,
|
256 |
+
request.embedding_column,
|
257 |
+
request.target_column,
|
258 |
+
request.num_results,
|
259 |
+
)
|
260 |
+
|
261 |
+
return JSONResponse(
|
262 |
+
content={
|
263 |
+
"message": "Search completed successfully.",
|
264 |
+
"results": results,
|
265 |
+
}
|
266 |
+
)
|
267 |
+
except DatasetNotFoundError as e:
|
268 |
+
logger.error(f"Dataset not found: {e}")
|
269 |
+
raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
|
270 |
+
except Exception as e:
|
271 |
+
logger.error(f"An error occurred: {e}")
|
272 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|