amaye15 commited on
Commit
fdc226e
·
1 Parent(s): 0fd1b97

Feat - embed endpoint created

Browse files
Files changed (2) hide show
  1. src/api/services/embedding_service.py +132 -3
  2. src/main.py +226 -2
src/api/services/embedding_service.py CHANGED
@@ -61,9 +61,89 @@
61
  # df_batch[output_column] = embeddings
62
  # return df_batch
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  from openai import AsyncOpenAI
65
  import logging
66
- from typing import List, Dict
67
  import pandas as pd
68
  import asyncio
69
  from src.api.exceptions import OpenAIError
@@ -106,10 +186,41 @@ class EmbeddingService:
106
  raise OpenAIError(f"OpenAI API error: {e}")
107
 
108
  async def create_embeddings(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  self, df: pd.DataFrame, target_column: str, output_column: str
110
  ) -> pd.DataFrame:
111
- """Create embeddings for the target column in the dataset."""
112
- logger.info("Generating embeddings...")
113
  self.total_requests = len(df) # Set total number of requests
114
  self.completed_requests = 0 # Reset completed requests counter
115
 
@@ -124,6 +235,24 @@ class EmbeddingService:
124
  )
125
  return pd.concat(processed_batches)
126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  async def _process_batch(
128
  self, df_batch: pd.DataFrame, target_column: str, output_column: str
129
  ) -> pd.DataFrame:
 
61
  # df_batch[output_column] = embeddings
62
  # return df_batch
63
 
64
+ # from openai import AsyncOpenAI
65
+ # import logging
66
+ # from typing import List, Dict
67
+ # import pandas as pd
68
+ # import asyncio
69
+ # from src.api.exceptions import OpenAIError
70
+
71
+ # # Set up structured logging
72
+ # logging.basicConfig(
73
+ # level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
74
+ # )
75
+ # logger = logging.getLogger(__name__)
76
+
77
+
78
+ # class EmbeddingService:
79
+ # def __init__(
80
+ # self,
81
+ # openai_api_key: str,
82
+ # model: str = "text-embedding-3-small",
83
+ # batch_size: int = 10,
84
+ # max_concurrent_requests: int = 10, # Limit to 10 concurrent requests
85
+ # ):
86
+ # self.client = AsyncOpenAI(api_key=openai_api_key)
87
+ # self.model = model
88
+ # self.batch_size = batch_size
89
+ # self.semaphore = asyncio.Semaphore(max_concurrent_requests) # Rate limiter
90
+ # self.total_requests = 0 # Total number of requests to process
91
+ # self.completed_requests = 0 # Number of completed requests
92
+
93
+ # async def get_embedding(self, text: str) -> List[float]:
94
+ # """Generate embeddings for the given text using OpenAI."""
95
+ # text = text.replace("\n", " ")
96
+ # try:
97
+ # async with self.semaphore: # Acquire a semaphore slot
98
+ # response = await self.client.embeddings.create(
99
+ # input=[text], model=self.model
100
+ # )
101
+ # self.completed_requests += 1 # Increment completed requests
102
+ # self._log_progress() # Log progress
103
+ # return response.data[0].embedding
104
+ # except Exception as e:
105
+ # logger.error(f"Failed to generate embedding: {e}")
106
+ # raise OpenAIError(f"OpenAI API error: {e}")
107
+
108
+ # async def create_embeddings(
109
+ # self, df: pd.DataFrame, target_column: str, output_column: str
110
+ # ) -> pd.DataFrame:
111
+ # """Create embeddings for the target column in the dataset."""
112
+ # logger.info("Generating embeddings...")
113
+ # self.total_requests = len(df) # Set total number of requests
114
+ # self.completed_requests = 0 # Reset completed requests counter
115
+
116
+ # batches = [
117
+ # df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
118
+ # ]
119
+ # processed_batches = await asyncio.gather(
120
+ # *[
121
+ # self._process_batch(batch, target_column, output_column)
122
+ # for batch in batches
123
+ # ]
124
+ # )
125
+ # return pd.concat(processed_batches)
126
+
127
+ # async def _process_batch(
128
+ # self, df_batch: pd.DataFrame, target_column: str, output_column: str
129
+ # ) -> pd.DataFrame:
130
+ # """Process a batch of rows to generate embeddings."""
131
+ # embeddings = await asyncio.gather(
132
+ # *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
133
+ # )
134
+ # df_batch[output_column] = embeddings
135
+ # return df_batch
136
+
137
+ # def _log_progress(self):
138
+ # """Log the progress of embedding generation."""
139
+ # progress = (self.completed_requests / self.total_requests) * 100
140
+ # logger.info(
141
+ # f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
142
+ # )
143
+
144
  from openai import AsyncOpenAI
145
  import logging
146
+ from typing import List, Dict, Union
147
  import pandas as pd
148
  import asyncio
149
  from src.api.exceptions import OpenAIError
 
186
  raise OpenAIError(f"OpenAI API error: {e}")
187
 
188
  async def create_embeddings(
189
+ self,
190
+ data: Union[pd.DataFrame, List[str]],
191
+ target_column: str = None,
192
+ output_column: str = "embeddings",
193
+ ) -> Union[pd.DataFrame, List[List[float]]]:
194
+ """
195
+ Create embeddings for either a DataFrame or a list of strings.
196
+
197
+ Args:
198
+ data: Either a DataFrame or a list of strings.
199
+ target_column: The column in the DataFrame to generate embeddings for (required if data is a DataFrame).
200
+ output_column: The column to store embeddings in the DataFrame (default: "embeddings").
201
+
202
+ Returns:
203
+ If data is a DataFrame, returns the DataFrame with the embeddings column.
204
+ If data is a list of strings, returns a list of embeddings.
205
+ """
206
+ if isinstance(data, pd.DataFrame):
207
+ if not target_column:
208
+ raise ValueError("target_column is required when data is a DataFrame.")
209
+ return await self._create_embeddings_for_dataframe(
210
+ data, target_column, output_column
211
+ )
212
+ elif isinstance(data, list):
213
+ return await self._create_embeddings_for_texts(data)
214
+ else:
215
+ raise TypeError(
216
+ "data must be either a pandas DataFrame or a list of strings."
217
+ )
218
+
219
+ async def _create_embeddings_for_dataframe(
220
  self, df: pd.DataFrame, target_column: str, output_column: str
221
  ) -> pd.DataFrame:
222
+ """Create embeddings for the target column in the DataFrame."""
223
+ logger.info("Generating embeddings for DataFrame...")
224
  self.total_requests = len(df) # Set total number of requests
225
  self.completed_requests = 0 # Reset completed requests counter
226
 
 
235
  )
236
  return pd.concat(processed_batches)
237
 
238
+ async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]:
239
+ """Create embeddings for a list of strings."""
240
+ logger.info("Generating embeddings for list of texts...")
241
+ self.total_requests = len(texts) # Set total number of requests
242
+ self.completed_requests = 0 # Reset completed requests counter
243
+
244
+ batches = [
245
+ texts[i : i + self.batch_size]
246
+ for i in range(0, len(texts), self.batch_size)
247
+ ]
248
+ embeddings = []
249
+ for batch in batches:
250
+ batch_embeddings = await asyncio.gather(
251
+ *[self.get_embedding(text) for text in batch]
252
+ )
253
+ embeddings.extend(batch_embeddings)
254
+ return embeddings
255
+
256
  async def _process_batch(
257
  self, df_batch: pd.DataFrame, target_column: str, output_column: str
258
  ) -> pd.DataFrame:
src/main.py CHANGED
@@ -1,3 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  from fastapi import FastAPI, Depends, HTTPException
3
  from fastapi.responses import JSONResponse, RedirectResponse
@@ -71,7 +259,44 @@ def get_huggingface_service() -> HuggingFaceService:
71
  return HuggingFaceService()
72
 
73
 
74
- # Endpoint to create embeddings
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  @app.post("/create_embedding")
76
  async def create_embedding(
77
  request: CreateEmbeddingRequest,
@@ -118,7 +343,6 @@ async def create_embedding(
118
 
119
 
120
  # Endpoint to read embeddings
121
- # @app.get("/read_embeddings/{dataset_name}")
122
  @app.post("/read_embeddings")
123
  async def read_embeddings(
124
  request: ReadEmbeddingRequest,
 
1
+ # import os
2
+ # from fastapi import FastAPI, Depends, HTTPException
3
+ # from fastapi.responses import JSONResponse, RedirectResponse
4
+ # from fastapi.middleware.gzip import GZipMiddleware
5
+ # from pydantic import BaseModel
6
+ # from typing import List, Dict
7
+ # from src.api.models.embedding_models import (
8
+ # CreateEmbeddingRequest,
9
+ # ReadEmbeddingRequest,
10
+ # UpdateEmbeddingRequest,
11
+ # DeleteEmbeddingRequest,
12
+ # )
13
+ # from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
14
+ # from src.api.services.embedding_service import EmbeddingService
15
+ # from src.api.services.huggingface_service import HuggingFaceService
16
+ # from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError
17
+ # import pandas as pd
18
+ # import logging
19
+ # from dotenv import load_dotenv
20
+
21
+ # # Load environment variables
22
+ # load_dotenv()
23
+
24
+ # # Set up structured logging
25
+ # logging.basicConfig(
26
+ # level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
27
+ # )
28
+ # logger = logging.getLogger(__name__)
29
+
30
+ # description = """A FastAPI application for similarity search with PostgreSQL and OpenAI embeddings.
31
+
32
+ # Direct/API URL:
33
+ # https://re-mind-similarity-search.hf.space
34
+ # """
35
+
36
+ # # Initialize FastAPI app
37
+ # app = FastAPI(
38
+ # title="Similarity Search API",
39
+ # description=description,
40
+ # version="1.0.0",
41
+ # )
42
+
43
+ # app.add_middleware(GZipMiddleware, minimum_size=1000)
44
+
45
+
46
+ # # Root endpoint redirects to /docs
47
+ # @app.get("/")
48
+ # async def root():
49
+ # return RedirectResponse(url="/docs")
50
+
51
+
52
+ # # Health check endpoint
53
+ # @app.get("/health")
54
+ # async def health_check(db: Database = Depends(get_db)):
55
+ # try:
56
+ # is_healthy = await db.health_check()
57
+ # if not is_healthy:
58
+ # raise HTTPException(status_code=500, detail="Database is unhealthy")
59
+ # return {"status": "healthy"}
60
+ # except HealthCheckError as e:
61
+ # raise HTTPException(status_code=500, detail=str(e))
62
+
63
+
64
+ # # Dependency to get EmbeddingService
65
+ # def get_embedding_service() -> EmbeddingService:
66
+ # return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))
67
+
68
+
69
+ # # Dependency to get HuggingFaceService
70
+ # def get_huggingface_service() -> HuggingFaceService:
71
+ # return HuggingFaceService()
72
+
73
+
74
+ # # Endpoint to create embeddings
75
+ # @app.post("/create_embedding")
76
+ # async def create_embedding(
77
+ # request: CreateEmbeddingRequest,
78
+ # db: Database = Depends(get_db),
79
+ # embedding_service: EmbeddingService = Depends(get_embedding_service),
80
+ # huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
81
+ # ):
82
+ # """
83
+ # Create embeddings for the target column in the dataset.
84
+ # """
85
+ # try:
86
+ # # Step 1: Query the database
87
+ # logger.info("Fetching data from the database...")
88
+ # result = await db.fetch(request.query)
89
+ # df = pd.DataFrame(result)
90
+
91
+ # # Step 2: Generate embeddings
92
+ # df = await embedding_service.create_embeddings(
93
+ # df, request.target_column, request.output_column
94
+ # )
95
+
96
+ # # Step 3: Push to Hugging Face Hub
97
+ # await huggingface_service.push_to_hub(df, request.dataset_name)
98
+
99
+ # return JSONResponse(
100
+ # content={
101
+ # "message": "Embeddings created and pushed to Hugging Face Hub.",
102
+ # "dataset_name": request.dataset_name,
103
+ # "num_rows": len(df),
104
+ # }
105
+ # )
106
+ # except QueryExecutionError as e:
107
+ # logger.error(f"Database query failed: {e}")
108
+ # raise HTTPException(status_code=500, detail=f"Database query failed: {e}")
109
+ # except OpenAIError as e:
110
+ # logger.error(f"OpenAI API error: {e}")
111
+ # raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
112
+ # except DatasetPushError as e:
113
+ # logger.error(f"Failed to push dataset: {e}")
114
+ # raise HTTPException(status_code=500, detail=f"Failed to push dataset: {e}")
115
+ # except Exception as e:
116
+ # logger.error(f"An error occurred: {e}")
117
+ # raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
118
+
119
+
120
+ # # Endpoint to read embeddings
121
+ # # @app.get("/read_embeddings/{dataset_name}")
122
+ # @app.post("/read_embeddings")
123
+ # async def read_embeddings(
124
+ # request: ReadEmbeddingRequest,
125
+ # huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
126
+ # ):
127
+ # """
128
+ # Read embeddings from a Hugging Face dataset.
129
+ # """
130
+ # try:
131
+ # df = await huggingface_service.read_dataset(request.dataset_name)
132
+ # return df
133
+ # except DatasetNotFoundError as e:
134
+ # logger.error(f"Dataset not found: {e}")
135
+ # raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
136
+ # except Exception as e:
137
+ # logger.error(f"An error occurred: {e}")
138
+ # raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
139
+
140
+
141
+ # # Endpoint to update embeddings
142
+ # @app.post("/update_embeddings")
143
+ # async def update_embeddings(
144
+ # request: UpdateEmbeddingRequest,
145
+ # huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
146
+ # ):
147
+ # """
148
+ # Update embeddings in a Hugging Face dataset.
149
+ # """
150
+ # try:
151
+ # df = await huggingface_service.update_dataset(
152
+ # request.dataset_name, request.updates
153
+ # )
154
+ # return {
155
+ # "message": "Embeddings updated successfully.",
156
+ # "dataset_name": request.dataset_name,
157
+ # }
158
+ # except DatasetPushError as e:
159
+ # logger.error(f"Failed to update dataset: {e}")
160
+ # raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
161
+ # except Exception as e:
162
+ # logger.error(f"An error occurred: {e}")
163
+ # raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
164
+
165
+
166
+ # # Endpoint to delete embeddings
167
+ # @app.post("/delete_embeddings")
168
+ # async def delete_embeddings(
169
+ # request: DeleteEmbeddingRequest,
170
+ # huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
171
+ # ):
172
+ # """
173
+ # Delete embeddings from a Hugging Face dataset.
174
+ # """
175
+ # try:
176
+ # await huggingface_service.delete_dataset(request.dataset_name)
177
+ # return {
178
+ # "message": "Embeddings deleted successfully.",
179
+ # "dataset_name": request.dataset_name,
180
+ # }
181
+ # except DatasetPushError as e:
182
+ # logger.error(f"Failed to delete columns: {e}")
183
+ # raise HTTPException(status_code=500, detail=f"Failed to delete columns: {e}")
184
+ # except Exception as e:
185
+ # logger.error(f"An error occurred: {e}")
186
+ # raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
187
+
188
+
189
  import os
190
  from fastapi import FastAPI, Depends, HTTPException
191
  from fastapi.responses import JSONResponse, RedirectResponse
 
259
  return HuggingFaceService()
260
 
261
 
262
+ # Request model for the /embed endpoint
263
+ class EmbedRequest(BaseModel):
264
+ texts: List[str] # List of strings to generate embeddings for
265
+ output_column: str = (
266
+ "embeddings" # Column to store embeddings (default: "embeddings")
267
+ )
268
+
269
+
270
+ # Endpoint to generate embeddings for a list of strings
271
+ @app.post("/embed")
272
+ async def embed(
273
+ request: EmbedRequest,
274
+ embedding_service: EmbeddingService = Depends(get_embedding_service),
275
+ ):
276
+ """
277
+ Generate embeddings for a list of strings and return them in the response.
278
+ """
279
+ try:
280
+ # Step 1: Generate embeddings
281
+ logger.info("Generating embeddings for list of texts...")
282
+ embeddings = await embedding_service.create_embeddings(request.texts)
283
+
284
+ return JSONResponse(
285
+ content={
286
+ "message": "Embeddings generated successfully.",
287
+ "embeddings": embeddings,
288
+ "num_texts": len(request.texts),
289
+ }
290
+ )
291
+ except OpenAIError as e:
292
+ logger.error(f"OpenAI API error: {e}")
293
+ raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
294
+ except Exception as e:
295
+ logger.error(f"An error occurred: {e}")
296
+ raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
297
+
298
+
299
+ # Endpoint to create embeddings from a database query
300
  @app.post("/create_embedding")
301
  async def create_embedding(
302
  request: CreateEmbeddingRequest,
 
343
 
344
 
345
  # Endpoint to read embeddings
 
346
  @app.post("/read_embeddings")
347
  async def read_embeddings(
348
  request: ReadEmbeddingRequest,