Spaces:
Running
Running
amaye15
commited on
Commit
·
fdc226e
1
Parent(s):
0fd1b97
Feat - embed endpoint created
Browse files- src/api/services/embedding_service.py +132 -3
- src/main.py +226 -2
src/api/services/embedding_service.py
CHANGED
@@ -61,9 +61,89 @@
|
|
61 |
# df_batch[output_column] = embeddings
|
62 |
# return df_batch
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
from openai import AsyncOpenAI
|
65 |
import logging
|
66 |
-
from typing import List, Dict
|
67 |
import pandas as pd
|
68 |
import asyncio
|
69 |
from src.api.exceptions import OpenAIError
|
@@ -106,10 +186,41 @@ class EmbeddingService:
|
|
106 |
raise OpenAIError(f"OpenAI API error: {e}")
|
107 |
|
108 |
async def create_embeddings(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
self, df: pd.DataFrame, target_column: str, output_column: str
|
110 |
) -> pd.DataFrame:
|
111 |
-
"""Create embeddings for the target column in the
|
112 |
-
logger.info("Generating embeddings...")
|
113 |
self.total_requests = len(df) # Set total number of requests
|
114 |
self.completed_requests = 0 # Reset completed requests counter
|
115 |
|
@@ -124,6 +235,24 @@ class EmbeddingService:
|
|
124 |
)
|
125 |
return pd.concat(processed_batches)
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
async def _process_batch(
|
128 |
self, df_batch: pd.DataFrame, target_column: str, output_column: str
|
129 |
) -> pd.DataFrame:
|
|
|
61 |
# df_batch[output_column] = embeddings
|
62 |
# return df_batch
|
63 |
|
64 |
+
# from openai import AsyncOpenAI
|
65 |
+
# import logging
|
66 |
+
# from typing import List, Dict
|
67 |
+
# import pandas as pd
|
68 |
+
# import asyncio
|
69 |
+
# from src.api.exceptions import OpenAIError
|
70 |
+
|
71 |
+
# # Set up structured logging
|
72 |
+
# logging.basicConfig(
|
73 |
+
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
74 |
+
# )
|
75 |
+
# logger = logging.getLogger(__name__)
|
76 |
+
|
77 |
+
|
78 |
+
# class EmbeddingService:
|
79 |
+
# def __init__(
|
80 |
+
# self,
|
81 |
+
# openai_api_key: str,
|
82 |
+
# model: str = "text-embedding-3-small",
|
83 |
+
# batch_size: int = 10,
|
84 |
+
# max_concurrent_requests: int = 10, # Limit to 10 concurrent requests
|
85 |
+
# ):
|
86 |
+
# self.client = AsyncOpenAI(api_key=openai_api_key)
|
87 |
+
# self.model = model
|
88 |
+
# self.batch_size = batch_size
|
89 |
+
# self.semaphore = asyncio.Semaphore(max_concurrent_requests) # Rate limiter
|
90 |
+
# self.total_requests = 0 # Total number of requests to process
|
91 |
+
# self.completed_requests = 0 # Number of completed requests
|
92 |
+
|
93 |
+
# async def get_embedding(self, text: str) -> List[float]:
|
94 |
+
# """Generate embeddings for the given text using OpenAI."""
|
95 |
+
# text = text.replace("\n", " ")
|
96 |
+
# try:
|
97 |
+
# async with self.semaphore: # Acquire a semaphore slot
|
98 |
+
# response = await self.client.embeddings.create(
|
99 |
+
# input=[text], model=self.model
|
100 |
+
# )
|
101 |
+
# self.completed_requests += 1 # Increment completed requests
|
102 |
+
# self._log_progress() # Log progress
|
103 |
+
# return response.data[0].embedding
|
104 |
+
# except Exception as e:
|
105 |
+
# logger.error(f"Failed to generate embedding: {e}")
|
106 |
+
# raise OpenAIError(f"OpenAI API error: {e}")
|
107 |
+
|
108 |
+
# async def create_embeddings(
|
109 |
+
# self, df: pd.DataFrame, target_column: str, output_column: str
|
110 |
+
# ) -> pd.DataFrame:
|
111 |
+
# """Create embeddings for the target column in the dataset."""
|
112 |
+
# logger.info("Generating embeddings...")
|
113 |
+
# self.total_requests = len(df) # Set total number of requests
|
114 |
+
# self.completed_requests = 0 # Reset completed requests counter
|
115 |
+
|
116 |
+
# batches = [
|
117 |
+
# df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
|
118 |
+
# ]
|
119 |
+
# processed_batches = await asyncio.gather(
|
120 |
+
# *[
|
121 |
+
# self._process_batch(batch, target_column, output_column)
|
122 |
+
# for batch in batches
|
123 |
+
# ]
|
124 |
+
# )
|
125 |
+
# return pd.concat(processed_batches)
|
126 |
+
|
127 |
+
# async def _process_batch(
|
128 |
+
# self, df_batch: pd.DataFrame, target_column: str, output_column: str
|
129 |
+
# ) -> pd.DataFrame:
|
130 |
+
# """Process a batch of rows to generate embeddings."""
|
131 |
+
# embeddings = await asyncio.gather(
|
132 |
+
# *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
|
133 |
+
# )
|
134 |
+
# df_batch[output_column] = embeddings
|
135 |
+
# return df_batch
|
136 |
+
|
137 |
+
# def _log_progress(self):
|
138 |
+
# """Log the progress of embedding generation."""
|
139 |
+
# progress = (self.completed_requests / self.total_requests) * 100
|
140 |
+
# logger.info(
|
141 |
+
# f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
|
142 |
+
# )
|
143 |
+
|
144 |
from openai import AsyncOpenAI
|
145 |
import logging
|
146 |
+
from typing import List, Dict, Union
|
147 |
import pandas as pd
|
148 |
import asyncio
|
149 |
from src.api.exceptions import OpenAIError
|
|
|
186 |
raise OpenAIError(f"OpenAI API error: {e}")
|
187 |
|
188 |
async def create_embeddings(
|
189 |
+
self,
|
190 |
+
data: Union[pd.DataFrame, List[str]],
|
191 |
+
target_column: str = None,
|
192 |
+
output_column: str = "embeddings",
|
193 |
+
) -> Union[pd.DataFrame, List[List[float]]]:
|
194 |
+
"""
|
195 |
+
Create embeddings for either a DataFrame or a list of strings.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
data: Either a DataFrame or a list of strings.
|
199 |
+
target_column: The column in the DataFrame to generate embeddings for (required if data is a DataFrame).
|
200 |
+
output_column: The column to store embeddings in the DataFrame (default: "embeddings").
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
If data is a DataFrame, returns the DataFrame with the embeddings column.
|
204 |
+
If data is a list of strings, returns a list of embeddings.
|
205 |
+
"""
|
206 |
+
if isinstance(data, pd.DataFrame):
|
207 |
+
if not target_column:
|
208 |
+
raise ValueError("target_column is required when data is a DataFrame.")
|
209 |
+
return await self._create_embeddings_for_dataframe(
|
210 |
+
data, target_column, output_column
|
211 |
+
)
|
212 |
+
elif isinstance(data, list):
|
213 |
+
return await self._create_embeddings_for_texts(data)
|
214 |
+
else:
|
215 |
+
raise TypeError(
|
216 |
+
"data must be either a pandas DataFrame or a list of strings."
|
217 |
+
)
|
218 |
+
|
219 |
+
async def _create_embeddings_for_dataframe(
|
220 |
self, df: pd.DataFrame, target_column: str, output_column: str
|
221 |
) -> pd.DataFrame:
|
222 |
+
"""Create embeddings for the target column in the DataFrame."""
|
223 |
+
logger.info("Generating embeddings for DataFrame...")
|
224 |
self.total_requests = len(df) # Set total number of requests
|
225 |
self.completed_requests = 0 # Reset completed requests counter
|
226 |
|
|
|
235 |
)
|
236 |
return pd.concat(processed_batches)
|
237 |
|
238 |
+
async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]:
|
239 |
+
"""Create embeddings for a list of strings."""
|
240 |
+
logger.info("Generating embeddings for list of texts...")
|
241 |
+
self.total_requests = len(texts) # Set total number of requests
|
242 |
+
self.completed_requests = 0 # Reset completed requests counter
|
243 |
+
|
244 |
+
batches = [
|
245 |
+
texts[i : i + self.batch_size]
|
246 |
+
for i in range(0, len(texts), self.batch_size)
|
247 |
+
]
|
248 |
+
embeddings = []
|
249 |
+
for batch in batches:
|
250 |
+
batch_embeddings = await asyncio.gather(
|
251 |
+
*[self.get_embedding(text) for text in batch]
|
252 |
+
)
|
253 |
+
embeddings.extend(batch_embeddings)
|
254 |
+
return embeddings
|
255 |
+
|
256 |
async def _process_batch(
|
257 |
self, df_batch: pd.DataFrame, target_column: str, output_column: str
|
258 |
) -> pd.DataFrame:
|
src/main.py
CHANGED
@@ -1,3 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from fastapi import FastAPI, Depends, HTTPException
|
3 |
from fastapi.responses import JSONResponse, RedirectResponse
|
@@ -71,7 +259,44 @@ def get_huggingface_service() -> HuggingFaceService:
|
|
71 |
return HuggingFaceService()
|
72 |
|
73 |
|
74 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
@app.post("/create_embedding")
|
76 |
async def create_embedding(
|
77 |
request: CreateEmbeddingRequest,
|
@@ -118,7 +343,6 @@ async def create_embedding(
|
|
118 |
|
119 |
|
120 |
# Endpoint to read embeddings
|
121 |
-
# @app.get("/read_embeddings/{dataset_name}")
|
122 |
@app.post("/read_embeddings")
|
123 |
async def read_embeddings(
|
124 |
request: ReadEmbeddingRequest,
|
|
|
1 |
+
# import os
|
2 |
+
# from fastapi import FastAPI, Depends, HTTPException
|
3 |
+
# from fastapi.responses import JSONResponse, RedirectResponse
|
4 |
+
# from fastapi.middleware.gzip import GZipMiddleware
|
5 |
+
# from pydantic import BaseModel
|
6 |
+
# from typing import List, Dict
|
7 |
+
# from src.api.models.embedding_models import (
|
8 |
+
# CreateEmbeddingRequest,
|
9 |
+
# ReadEmbeddingRequest,
|
10 |
+
# UpdateEmbeddingRequest,
|
11 |
+
# DeleteEmbeddingRequest,
|
12 |
+
# )
|
13 |
+
# from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
|
14 |
+
# from src.api.services.embedding_service import EmbeddingService
|
15 |
+
# from src.api.services.huggingface_service import HuggingFaceService
|
16 |
+
# from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError
|
17 |
+
# import pandas as pd
|
18 |
+
# import logging
|
19 |
+
# from dotenv import load_dotenv
|
20 |
+
|
21 |
+
# # Load environment variables
|
22 |
+
# load_dotenv()
|
23 |
+
|
24 |
+
# # Set up structured logging
|
25 |
+
# logging.basicConfig(
|
26 |
+
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
27 |
+
# )
|
28 |
+
# logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
# description = """A FastAPI application for similarity search with PostgreSQL and OpenAI embeddings.
|
31 |
+
|
32 |
+
# Direct/API URL:
|
33 |
+
# https://re-mind-similarity-search.hf.space
|
34 |
+
# """
|
35 |
+
|
36 |
+
# # Initialize FastAPI app
|
37 |
+
# app = FastAPI(
|
38 |
+
# title="Similarity Search API",
|
39 |
+
# description=description,
|
40 |
+
# version="1.0.0",
|
41 |
+
# )
|
42 |
+
|
43 |
+
# app.add_middleware(GZipMiddleware, minimum_size=1000)
|
44 |
+
|
45 |
+
|
46 |
+
# # Root endpoint redirects to /docs
|
47 |
+
# @app.get("/")
|
48 |
+
# async def root():
|
49 |
+
# return RedirectResponse(url="/docs")
|
50 |
+
|
51 |
+
|
52 |
+
# # Health check endpoint
|
53 |
+
# @app.get("/health")
|
54 |
+
# async def health_check(db: Database = Depends(get_db)):
|
55 |
+
# try:
|
56 |
+
# is_healthy = await db.health_check()
|
57 |
+
# if not is_healthy:
|
58 |
+
# raise HTTPException(status_code=500, detail="Database is unhealthy")
|
59 |
+
# return {"status": "healthy"}
|
60 |
+
# except HealthCheckError as e:
|
61 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
62 |
+
|
63 |
+
|
64 |
+
# # Dependency to get EmbeddingService
|
65 |
+
# def get_embedding_service() -> EmbeddingService:
|
66 |
+
# return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
67 |
+
|
68 |
+
|
69 |
+
# # Dependency to get HuggingFaceService
|
70 |
+
# def get_huggingface_service() -> HuggingFaceService:
|
71 |
+
# return HuggingFaceService()
|
72 |
+
|
73 |
+
|
74 |
+
# # Endpoint to create embeddings
|
75 |
+
# @app.post("/create_embedding")
|
76 |
+
# async def create_embedding(
|
77 |
+
# request: CreateEmbeddingRequest,
|
78 |
+
# db: Database = Depends(get_db),
|
79 |
+
# embedding_service: EmbeddingService = Depends(get_embedding_service),
|
80 |
+
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
81 |
+
# ):
|
82 |
+
# """
|
83 |
+
# Create embeddings for the target column in the dataset.
|
84 |
+
# """
|
85 |
+
# try:
|
86 |
+
# # Step 1: Query the database
|
87 |
+
# logger.info("Fetching data from the database...")
|
88 |
+
# result = await db.fetch(request.query)
|
89 |
+
# df = pd.DataFrame(result)
|
90 |
+
|
91 |
+
# # Step 2: Generate embeddings
|
92 |
+
# df = await embedding_service.create_embeddings(
|
93 |
+
# df, request.target_column, request.output_column
|
94 |
+
# )
|
95 |
+
|
96 |
+
# # Step 3: Push to Hugging Face Hub
|
97 |
+
# await huggingface_service.push_to_hub(df, request.dataset_name)
|
98 |
+
|
99 |
+
# return JSONResponse(
|
100 |
+
# content={
|
101 |
+
# "message": "Embeddings created and pushed to Hugging Face Hub.",
|
102 |
+
# "dataset_name": request.dataset_name,
|
103 |
+
# "num_rows": len(df),
|
104 |
+
# }
|
105 |
+
# )
|
106 |
+
# except QueryExecutionError as e:
|
107 |
+
# logger.error(f"Database query failed: {e}")
|
108 |
+
# raise HTTPException(status_code=500, detail=f"Database query failed: {e}")
|
109 |
+
# except OpenAIError as e:
|
110 |
+
# logger.error(f"OpenAI API error: {e}")
|
111 |
+
# raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
|
112 |
+
# except DatasetPushError as e:
|
113 |
+
# logger.error(f"Failed to push dataset: {e}")
|
114 |
+
# raise HTTPException(status_code=500, detail=f"Failed to push dataset: {e}")
|
115 |
+
# except Exception as e:
|
116 |
+
# logger.error(f"An error occurred: {e}")
|
117 |
+
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
118 |
+
|
119 |
+
|
120 |
+
# # Endpoint to read embeddings
|
121 |
+
# # @app.get("/read_embeddings/{dataset_name}")
|
122 |
+
# @app.post("/read_embeddings")
|
123 |
+
# async def read_embeddings(
|
124 |
+
# request: ReadEmbeddingRequest,
|
125 |
+
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
126 |
+
# ):
|
127 |
+
# """
|
128 |
+
# Read embeddings from a Hugging Face dataset.
|
129 |
+
# """
|
130 |
+
# try:
|
131 |
+
# df = await huggingface_service.read_dataset(request.dataset_name)
|
132 |
+
# return df
|
133 |
+
# except DatasetNotFoundError as e:
|
134 |
+
# logger.error(f"Dataset not found: {e}")
|
135 |
+
# raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
|
136 |
+
# except Exception as e:
|
137 |
+
# logger.error(f"An error occurred: {e}")
|
138 |
+
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
139 |
+
|
140 |
+
|
141 |
+
# # Endpoint to update embeddings
|
142 |
+
# @app.post("/update_embeddings")
|
143 |
+
# async def update_embeddings(
|
144 |
+
# request: UpdateEmbeddingRequest,
|
145 |
+
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
146 |
+
# ):
|
147 |
+
# """
|
148 |
+
# Update embeddings in a Hugging Face dataset.
|
149 |
+
# """
|
150 |
+
# try:
|
151 |
+
# df = await huggingface_service.update_dataset(
|
152 |
+
# request.dataset_name, request.updates
|
153 |
+
# )
|
154 |
+
# return {
|
155 |
+
# "message": "Embeddings updated successfully.",
|
156 |
+
# "dataset_name": request.dataset_name,
|
157 |
+
# }
|
158 |
+
# except DatasetPushError as e:
|
159 |
+
# logger.error(f"Failed to update dataset: {e}")
|
160 |
+
# raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
|
161 |
+
# except Exception as e:
|
162 |
+
# logger.error(f"An error occurred: {e}")
|
163 |
+
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
164 |
+
|
165 |
+
|
166 |
+
# # Endpoint to delete embeddings
|
167 |
+
# @app.post("/delete_embeddings")
|
168 |
+
# async def delete_embeddings(
|
169 |
+
# request: DeleteEmbeddingRequest,
|
170 |
+
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
171 |
+
# ):
|
172 |
+
# """
|
173 |
+
# Delete embeddings from a Hugging Face dataset.
|
174 |
+
# """
|
175 |
+
# try:
|
176 |
+
# await huggingface_service.delete_dataset(request.dataset_name)
|
177 |
+
# return {
|
178 |
+
# "message": "Embeddings deleted successfully.",
|
179 |
+
# "dataset_name": request.dataset_name,
|
180 |
+
# }
|
181 |
+
# except DatasetPushError as e:
|
182 |
+
# logger.error(f"Failed to delete columns: {e}")
|
183 |
+
# raise HTTPException(status_code=500, detail=f"Failed to delete columns: {e}")
|
184 |
+
# except Exception as e:
|
185 |
+
# logger.error(f"An error occurred: {e}")
|
186 |
+
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
187 |
+
|
188 |
+
|
189 |
import os
|
190 |
from fastapi import FastAPI, Depends, HTTPException
|
191 |
from fastapi.responses import JSONResponse, RedirectResponse
|
|
|
259 |
return HuggingFaceService()
|
260 |
|
261 |
|
262 |
+
# Request model for the /embed endpoint
|
263 |
+
class EmbedRequest(BaseModel):
|
264 |
+
texts: List[str] # List of strings to generate embeddings for
|
265 |
+
output_column: str = (
|
266 |
+
"embeddings" # Column to store embeddings (default: "embeddings")
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
# Endpoint to generate embeddings for a list of strings
|
271 |
+
@app.post("/embed")
|
272 |
+
async def embed(
|
273 |
+
request: EmbedRequest,
|
274 |
+
embedding_service: EmbeddingService = Depends(get_embedding_service),
|
275 |
+
):
|
276 |
+
"""
|
277 |
+
Generate embeddings for a list of strings and return them in the response.
|
278 |
+
"""
|
279 |
+
try:
|
280 |
+
# Step 1: Generate embeddings
|
281 |
+
logger.info("Generating embeddings for list of texts...")
|
282 |
+
embeddings = await embedding_service.create_embeddings(request.texts)
|
283 |
+
|
284 |
+
return JSONResponse(
|
285 |
+
content={
|
286 |
+
"message": "Embeddings generated successfully.",
|
287 |
+
"embeddings": embeddings,
|
288 |
+
"num_texts": len(request.texts),
|
289 |
+
}
|
290 |
+
)
|
291 |
+
except OpenAIError as e:
|
292 |
+
logger.error(f"OpenAI API error: {e}")
|
293 |
+
raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
|
294 |
+
except Exception as e:
|
295 |
+
logger.error(f"An error occurred: {e}")
|
296 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
297 |
+
|
298 |
+
|
299 |
+
# Endpoint to create embeddings from a database query
|
300 |
@app.post("/create_embedding")
|
301 |
async def create_embedding(
|
302 |
request: CreateEmbeddingRequest,
|
|
|
343 |
|
344 |
|
345 |
# Endpoint to read embeddings
|
|
|
346 |
@app.post("/read_embeddings")
|
347 |
async def read_embeddings(
|
348 |
request: ReadEmbeddingRequest,
|