reab5555's picture
Update app.py
d095b6d verified
raw
history blame
9.54 kB
import gradio as gr
import tempfile
import os
from pathlib import Path
from io import BytesIO
from settings import (
respond,
generate_random_string,
reset_interview,
generate_interview_report,
generate_report_from_file,
interview_history,
question_count,
language,
)
from ai_config import convert_text_to_speech, transcribe_audio, n_of_questions
from prompt_instructions import get_interview_initial_message_sarah, get_interview_initial_message_aaron
# Global variables
temp_audio_files = []
initial_audio_path = None
selected_interviewer = "Sarah"
def reset_interview_action(voice):
global question_count, interview_history, selected_interviewer
selected_interviewer = voice
question_count = 0
interview_history.clear()
if voice == "Sarah":
initial_message = get_interview_initial_message_sarah()
voice_setting = "alloy"
else:
initial_message = get_interview_initial_message_aaron()
voice_setting = "onyx"
initial_message = str(initial_message)
initial_audio_buffer = BytesIO()
convert_text_to_speech(initial_message, initial_audio_buffer, voice_setting)
initial_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(initial_audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
return (
[(None, initial_message[0] if isinstance(initial_message, tuple) else initial_message)],
gr.Audio(value=temp_audio_path, label=voice, autoplay=True),
gr.Textbox(value="")
)
def create_app():
global initial_audio_path, selected_interviewer
initial_message = get_interview_initial_message_sarah()
initial_audio_buffer = BytesIO()
convert_text_to_speech(initial_message, initial_audio_buffer, "alloy")
initial_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
initial_audio_path = temp_file.name
temp_file.write(initial_audio_buffer.getvalue())
temp_audio_files.append(initial_audio_path)
with gr.Blocks(title="AI Clinical Psychologist Interviewer 𝚿") as demo:
gr.Image(value="appendix/icon.jpeg", label='icon', width=20, scale=1, show_label=False, show_fullscreen_button=False,
show_download_button=False, show_share_button=False)
gr.Markdown(
"""
# Clinical Psychologist Interviewer 𝚿
This chatbot conducts clinical interviews based on psychological knowledge.
The interviewer will prepare a clinical report based on the interview.
* Please note that this is a simulation and should not be used as a substitute for professional medical advice.
* It is important to emphasize that any information shared is confidential and cannot be accessed.
* In any case, it is recommended not to share sensitive information.
"""
)
with gr.Tab("Interview"):
with gr.Row():
reset_button = gr.Button("Select Interviewer", size='sm', scale=1)
voice_radio = gr.Radio(["Sarah", "Aaron"], label="Select Interviewer", value="Sarah", scale=1, info='Each interviewer has a unique approach and a different professional background.')
audio_output = gr.Audio(
label="Sarah",
scale=3,
value=initial_audio_path,
autoplay=True,
visible=True,
show_download_button=False,
)
chatbot = gr.Chatbot(value=[(None, f"{initial_message}")], label=f"Clinical Interview πšΏπŸ“‹")
with gr.Row():
msg = gr.Textbox(label="Type your message here...", scale=3)
audio_input = gr.Audio(sources=(["microphone"]), label="Record your message", type="filepath", scale=1)
send_button = gr.Button("Send")
pdf_output = gr.File(label="Download Report", visible=False)
def user(user_message, audio, history):
if audio is not None:
user_message = transcribe_audio(audio)
return "", None, history + [[user_message, None]]
def bot_response(chatbot, message, voice_selection):
global question_count, temp_audio_files, selected_interviewer
selected_interviewer = voice_selection
question_count += 1
last_user_message = chatbot[-1][0] if chatbot else message
voice = "alloy" if selected_interviewer == "Sarah" else "onyx"
response, audio_buffer = respond(chatbot, last_user_message, voice, selected_interviewer)
for bot_message in response:
chatbot.append((None, bot_message[1]))
if isinstance(audio_buffer, BytesIO):
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
audio_output = gr.Audio(value=temp_audio_path, label=voice_selection, autoplay=True)
else:
audio_output = gr.Audio(value=audio_buffer, label=voice_selection, autoplay=True)
if question_count >= n_of_questions():
conclusion_message = "Thank you for participating in this interview. We have reached the end of our session. I hope this conversation has been helpful. Take care!"
chatbot.append((None, conclusion_message))
conclusion_audio_buffer = BytesIO()
convert_text_to_speech(conclusion_message, conclusion_audio_buffer, voice)
conclusion_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(conclusion_audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
audio_output = gr.Audio(value=temp_audio_path, label=voice_selection, autoplay=True)
report_content, pdf_path = generate_interview_report(interview_history, language)
chatbot.append((None, f"Interview Report:\n\n{report_content}"))
return chatbot, audio_output, gr.File(visible=True, value=pdf_path)
return chatbot, audio_output, gr.File(visible=False)
msg.submit(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
bot_response, [chatbot, msg, voice_radio], [chatbot, audio_output, pdf_output]
)
send_button.click(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
bot_response, [chatbot, msg, voice_radio], [chatbot, audio_output, pdf_output]
)
reset_button.click(
reset_interview_action,
inputs=[voice_radio],
outputs=[chatbot, audio_output, msg]
)
with gr.Tab("Upload Document"):
gr.Markdown('Please upload a document that contains content written about a patient or by the patient.')
gr.Markdown('* Maximum length is up to 100K characters.')
gr.Markdown('* It is important to emphasize that the uploaded document is confidential and cannot be accessed.')
gr.Markdown('* In any case, it is recommended not to upload sensitive documents.')
file_input = gr.File(label="Upload a TXT, PDF, or DOCX file")
#language_input = gr.Textbox(label="Preferred Language for Report")
language_input = 'English'
generate_button = gr.Button("Generate Report")
report_output = gr.Textbox(label="Generated Report", lines=100, visible=False)
pdf_output = gr.File(label="Download Report", visible=True)
def generate_report_and_pdf(file, language):
report_content, pdf_path = generate_report_from_file(file, language)
return report_content, pdf_path, gr.File(visible=True)
generate_button.click(
generate_report_and_pdf,
inputs=[file_input],
outputs=[report_output, pdf_output, pdf_output]
)
with gr.Tab("Description"):
with open('appendix/description.txt', 'r', encoding='utf-8') as file:
description_txt = file.read()
gr.Markdown(description_txt)
gr.HTML("<div style='height: 15px;'></div>")
gr.Image(value="appendix/diagram.png", label='diagram', width=700, scale=1, show_label=False,
show_download_button=False, show_share_button=False)
return demo
# Clean up function
def cleanup():
global temp_audio_files, initial_audio_path
for audio_file in temp_audio_files:
if os.path.exists(audio_file):
os.unlink(audio_file)
temp_audio_files.clear()
if initial_audio_path and os.path.exists(initial_audio_path):
os.unlink(initial_audio_path)
if __name__ == "__main__":
app = create_app()
try:
app.launch()
finally:
cleanup()