reab5555's picture
Update app.py
8e1a910 verified
raw
history blame
7.87 kB
import gradio as gr
import tempfile
import os
from pathlib import Path
from io import BytesIO
from settings import (
respond,
generate_random_string,
reset_interview,
generate_interview_report,
generate_report_from_file,
interview_history,
question_count,
language,
)
from ai_config import convert_text_to_speech, transcribe_audio, n_of_questions
from prompt_instructions import get_interview_initial_message
# Global variables
temp_audio_files = []
initial_audio_path = None
def reset_interview_action():
global question_count, interview_history
question_count = 0
interview_history.clear()
initial_message = get_interview_initial_message()
# Generate new audio for the initial message
initial_audio_buffer = BytesIO()
convert_text_to_speech(initial_message, initial_audio_buffer)
initial_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(initial_audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
return (
[(None, initial_message)], # Reset chatbot
temp_audio_path, # New audio
gr.File(visible=False), # Hide PDF output
gr.Textbox(visible=True), # Show message input
"Interview reset. You can start a new interview now." # Status message
)
# Initialize Gradio interface
def create_app():
global initial_audio_path
initial_message = get_interview_initial_message()
# Generate the audio for the initial message and save to a temporary file
initial_audio_buffer = BytesIO()
convert_text_to_speech(initial_message, initial_audio_buffer)
initial_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
initial_audio_path = temp_file.name
temp_file.write(initial_audio_buffer.getvalue())
temp_audio_files.append(initial_audio_path)
with gr.Blocks(title="Clinical Psychologist Interviewer 𝚿") as demo:
gr.Markdown(
"""
# Clinical Psychologist Interviewer 𝚿
This chatbot conducts clinical interviews based on psychological knowledge.
Please note that this is a simulation and should not be used as a substitute for professional medical advice.
The interviewer will prepare a clinical report based on the interview.
"""
)
with gr.Tab("Interview"):
audio_output = gr.Audio(
label="Sarah",
scale=1,
value=initial_audio_path,
autoplay=True,
visible=True,
show_download_button=False,
)
reset_button = gr.Button("Reset Interview", size='sm')
chatbot = gr.Chatbot(value=[(None, f"{initial_message}")], label=f"Clinical Interview πšΏπŸ“‹")
with gr.Row():
msg = gr.Textbox(label="Type your message here...", scale=3)
audio_input = gr.Audio(sources=(["microphone"]), label="Record your message", type="filepath", scale=2)
send_button = gr.Button("Send")
pdf_output = gr.File(label="Download Report", visible=False)
def user(user_message, audio, history):
print(audio)
if audio is not None:
user_message = transcribe_audio(audio)
print(user_message)
return "", None, history + [[user_message, None]]
def bot_response(chatbot, message):
global question_count, temp_audio_files
question_count += 1
# Use the last user message from the chatbot history
last_user_message = chatbot[-1][0] if chatbot else message
response, audio_buffer = respond(chatbot, last_user_message)
# Add all bot responses to the chatbot history
for bot_message in response:
chatbot.append((None, bot_message[1]))
if isinstance(audio_buffer, BytesIO):
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
audio_output = temp_audio_path
else:
audio_output = audio_buffer
if question_count >= n_of_questions():
conclusion_message = "Thank you for participating in this interview. We have reached the end of our session. I hope this conversation has been helpful. Take care!"
chatbot.append((None, conclusion_message))
conclusion_audio_buffer = BytesIO()
convert_text_to_speech(conclusion_message, conclusion_audio_buffer)
conclusion_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(conclusion_audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
audio_output = temp_audio_path
# Generate report automatically
report_content, pdf_path = generate_interview_report(interview_history, language)
# Add report to the chat
chatbot.append((None, f"Interview Report:\n\n{report_content}"))
return chatbot, audio_output, gr.File(visible=True, value=pdf_path), gr.Textbox(visible=False)
return chatbot, audio_output, gr.File(visible=False), gr.Textbox(visible=True)
msg.submit(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
bot_response, [chatbot, msg], [chatbot, audio_output, pdf_output, msg]
)
send_button.click(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
bot_response, [chatbot, msg], [chatbot, audio_output, pdf_output, msg]
)
reset_button.click(
reset_interview_action,
inputs=[],
outputs=[chatbot, audio_output, pdf_output, msg, audio_input]
)
with gr.Tab("Upload Document"):
file_input = gr.File(label="Upload a TXT, PDF, or DOCX file")
language_input = gr.Textbox(label="Preferred Language for Report",
placeholder="Enter language")
generate_button = gr.Button("Generate Report")
report_output = gr.Textbox(label="Generated Report", lines=100)
pdf_output = gr.File(label="Download Report", visible=True)
def generate_report_and_pdf(file, language):
report_content, pdf_path = generate_report_from_file(file, language)
return report_content, pdf_path, gr.File(visible=True)
generate_button.click(
generate_report_and_pdf,
inputs=[file_input, language_input],
outputs=[report_output, pdf_output, pdf_output]
)
return demo
# Clean up function
def cleanup():
global temp_audio_files, initial_audio_path
for audio_file in temp_audio_files:
if os.path.exists(audio_file):
os.unlink(audio_file)
temp_audio_files.clear()
if initial_audio_path and os.path.exists(initial_audio_path):
os.unlink(initial_audio_path)
if __name__ == "__main__":
app = create_app()
try:
app.launch()
finally:
cleanup()