Update app.py
Browse files
app.py
CHANGED
@@ -14,22 +14,30 @@ from settings import (
|
|
14 |
language,
|
15 |
)
|
16 |
from ai_config import convert_text_to_speech, transcribe_audio, n_of_questions
|
17 |
-
from prompt_instructions import
|
18 |
|
19 |
# Global variables
|
20 |
temp_audio_files = []
|
21 |
initial_audio_path = None
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
question_count = 0
|
27 |
interview_history.clear()
|
28 |
-
initial_message = get_interview_initial_message()
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
initial_audio_buffer = BytesIO()
|
32 |
-
convert_text_to_speech(initial_message, initial_audio_buffer)
|
33 |
initial_audio_buffer.seek(0)
|
34 |
|
35 |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
@@ -39,21 +47,17 @@ def reset_interview_action():
|
|
39 |
temp_audio_files.append(temp_audio_path)
|
40 |
|
41 |
return (
|
42 |
-
[(None, initial_message)],
|
43 |
-
temp_audio_path,
|
44 |
-
gr.
|
45 |
-
gr.Textbox(visible=True),
|
46 |
-
"Interview reset. You can start a new interview now."
|
47 |
)
|
48 |
|
49 |
-
# Initialize Gradio interface
|
50 |
def create_app():
|
51 |
-
global initial_audio_path
|
52 |
-
initial_message =
|
53 |
|
54 |
-
# Generate the audio for the initial message and save to a temporary file
|
55 |
initial_audio_buffer = BytesIO()
|
56 |
-
convert_text_to_speech(initial_message, initial_audio_buffer)
|
57 |
initial_audio_buffer.seek(0)
|
58 |
|
59 |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
@@ -63,53 +67,53 @@ def create_app():
|
|
63 |
temp_audio_files.append(initial_audio_path)
|
64 |
|
65 |
with gr.Blocks(title="Clinical Psychologist Interviewer ๐ฟ") as demo:
|
66 |
-
gr.Image(value="appendix/icon.jpeg", label='icon', width=20, scale=1, show_label=False,
|
|
|
67 |
gr.Markdown(
|
68 |
"""
|
69 |
# Clinical Psychologist Interviewer ๐ฟ
|
70 |
This chatbot conducts clinical interviews based on psychological knowledge.
|
71 |
Please note that this is a simulation and should not be used as a substitute for professional medical advice.
|
72 |
-
|
73 |
The interviewer will prepare a clinical report based on the interview.
|
74 |
"""
|
75 |
)
|
76 |
|
77 |
with gr.Tab("Interview"):
|
78 |
-
|
79 |
-
|
80 |
-
scale=1,
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
86 |
|
87 |
-
reset_button = gr.Button("Reset Interview", size='sm')
|
88 |
chatbot = gr.Chatbot(value=[(None, f"{initial_message}")], label=f"Clinical Interview ๐ฟ๐")
|
89 |
with gr.Row():
|
90 |
msg = gr.Textbox(label="Type your message here...", scale=3)
|
91 |
-
audio_input = gr.Audio(sources=(["microphone"]), label="Record your message", type="filepath", scale=
|
92 |
send_button = gr.Button("Send")
|
93 |
pdf_output = gr.File(label="Download Report", visible=False)
|
94 |
|
95 |
def user(user_message, audio, history):
|
96 |
-
print(audio)
|
97 |
if audio is not None:
|
98 |
user_message = transcribe_audio(audio)
|
99 |
-
print(user_message)
|
100 |
-
|
101 |
return "", None, history + [[user_message, None]]
|
102 |
|
103 |
-
def bot_response(chatbot, message):
|
104 |
-
global question_count, temp_audio_files
|
|
|
105 |
question_count += 1
|
106 |
|
107 |
-
# Use the last user message from the chatbot history
|
108 |
last_user_message = chatbot[-1][0] if chatbot else message
|
109 |
|
110 |
-
|
|
|
111 |
|
112 |
-
# Add all bot responses to the chatbot history
|
113 |
for bot_message in response:
|
114 |
chatbot.append((None, bot_message[1]))
|
115 |
|
@@ -118,46 +122,43 @@ def create_app():
|
|
118 |
temp_audio_path = temp_file.name
|
119 |
temp_file.write(audio_buffer.getvalue())
|
120 |
temp_audio_files.append(temp_audio_path)
|
121 |
-
audio_output = temp_audio_path
|
122 |
else:
|
123 |
-
audio_output = audio_buffer
|
124 |
|
125 |
if question_count >= n_of_questions():
|
126 |
conclusion_message = "Thank you for participating in this interview. We have reached the end of our session. I hope this conversation has been helpful. Take care!"
|
127 |
chatbot.append((None, conclusion_message))
|
128 |
|
129 |
conclusion_audio_buffer = BytesIO()
|
130 |
-
convert_text_to_speech(conclusion_message, conclusion_audio_buffer)
|
131 |
conclusion_audio_buffer.seek(0)
|
132 |
|
133 |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
134 |
temp_audio_path = temp_file.name
|
135 |
temp_file.write(conclusion_audio_buffer.getvalue())
|
136 |
temp_audio_files.append(temp_audio_path)
|
137 |
-
audio_output = temp_audio_path
|
138 |
|
139 |
-
# Generate report automatically
|
140 |
report_content, pdf_path = generate_interview_report(interview_history, language)
|
141 |
-
|
142 |
-
# Add report to the chat
|
143 |
chatbot.append((None, f"Interview Report:\n\n{report_content}"))
|
144 |
|
145 |
-
return chatbot, audio_output, gr.File(visible=True, value=pdf_path)
|
146 |
|
147 |
-
return chatbot, audio_output, gr.File(visible=False)
|
148 |
|
149 |
msg.submit(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
|
150 |
-
bot_response, [chatbot, msg], [chatbot, audio_output, pdf_output
|
151 |
)
|
152 |
|
153 |
send_button.click(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
|
154 |
-
bot_response, [chatbot, msg], [chatbot, audio_output, pdf_output
|
155 |
)
|
156 |
|
157 |
reset_button.click(
|
158 |
reset_interview_action,
|
159 |
-
inputs=[],
|
160 |
-
outputs=[chatbot, audio_output,
|
161 |
)
|
162 |
|
163 |
with gr.Tab("Upload Document"):
|
@@ -178,14 +179,14 @@ def create_app():
|
|
178 |
outputs=[report_output, pdf_output, pdf_output]
|
179 |
)
|
180 |
with gr.Tab("Description"):
|
181 |
-
with open('appendix/description.txt', 'r') as file:
|
182 |
description_txt = file.read()
|
183 |
gr.Markdown(description_txt)
|
184 |
gr.HTML("<div style='height: 15px;'></div>")
|
185 |
-
gr.Image(value="appendix/diagram.png", label='diagram', width=700, scale=1, show_label=False,
|
186 |
-
|
187 |
-
return demo
|
188 |
|
|
|
189 |
|
190 |
# Clean up function
|
191 |
def cleanup():
|
@@ -198,7 +199,6 @@ def cleanup():
|
|
198 |
if initial_audio_path and os.path.exists(initial_audio_path):
|
199 |
os.unlink(initial_audio_path)
|
200 |
|
201 |
-
|
202 |
if __name__ == "__main__":
|
203 |
app = create_app()
|
204 |
try:
|
|
|
14 |
language,
|
15 |
)
|
16 |
from ai_config import convert_text_to_speech, transcribe_audio, n_of_questions
|
17 |
+
from prompt_instructions import get_interview_initial_message_sarah, get_interview_initial_message_aaron
|
18 |
|
19 |
# Global variables
|
20 |
temp_audio_files = []
|
21 |
initial_audio_path = None
|
22 |
+
selected_interviewer = "Sarah"
|
23 |
|
24 |
+
def reset_interview_action(voice):
|
25 |
+
global question_count, interview_history, selected_interviewer
|
26 |
+
selected_interviewer = voice
|
27 |
question_count = 0
|
28 |
interview_history.clear()
|
|
|
29 |
|
30 |
+
if voice == "Sarah":
|
31 |
+
initial_message = get_interview_initial_message_sarah()
|
32 |
+
voice_setting = "alloy"
|
33 |
+
else:
|
34 |
+
initial_message = get_interview_initial_message_aaron()
|
35 |
+
voice_setting = "onyx"
|
36 |
+
|
37 |
+
initial_message = str(initial_message)
|
38 |
+
|
39 |
initial_audio_buffer = BytesIO()
|
40 |
+
convert_text_to_speech(initial_message, initial_audio_buffer, voice_setting)
|
41 |
initial_audio_buffer.seek(0)
|
42 |
|
43 |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
|
|
47 |
temp_audio_files.append(temp_audio_path)
|
48 |
|
49 |
return (
|
50 |
+
[(None, initial_message[0] if isinstance(initial_message, tuple) else initial_message)],
|
51 |
+
gr.Audio(value=temp_audio_path, label=voice, autoplay=True),
|
52 |
+
gr.Textbox(value="")
|
|
|
|
|
53 |
)
|
54 |
|
|
|
55 |
def create_app():
|
56 |
+
global initial_audio_path, selected_interviewer
|
57 |
+
initial_message = get_interview_initial_message_sarah()
|
58 |
|
|
|
59 |
initial_audio_buffer = BytesIO()
|
60 |
+
convert_text_to_speech(initial_message, initial_audio_buffer, "alloy")
|
61 |
initial_audio_buffer.seek(0)
|
62 |
|
63 |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
|
|
67 |
temp_audio_files.append(initial_audio_path)
|
68 |
|
69 |
with gr.Blocks(title="Clinical Psychologist Interviewer ๐ฟ") as demo:
|
70 |
+
gr.Image(value="appendix/icon.jpeg", label='icon', width=20, scale=1, show_label=False,
|
71 |
+
show_download_button=False, show_share_button=False)
|
72 |
gr.Markdown(
|
73 |
"""
|
74 |
# Clinical Psychologist Interviewer ๐ฟ
|
75 |
This chatbot conducts clinical interviews based on psychological knowledge.
|
76 |
Please note that this is a simulation and should not be used as a substitute for professional medical advice.
|
77 |
+
|
78 |
The interviewer will prepare a clinical report based on the interview.
|
79 |
"""
|
80 |
)
|
81 |
|
82 |
with gr.Tab("Interview"):
|
83 |
+
with gr.Row():
|
84 |
+
reset_button = gr.Button("Select Interviewer", size='sm', scale=1, icon='appendix/psi.png')
|
85 |
+
voice_radio = gr.Radio(["Sarah", "Aaron"], label="Select Interviewer", value="Sarah", scale=1, info='Each interviewer has a unique approach and a different professional background.')
|
86 |
+
audio_output = gr.Audio(
|
87 |
+
label="Sarah",
|
88 |
+
scale=3,
|
89 |
+
value=initial_audio_path,
|
90 |
+
autoplay=True,
|
91 |
+
visible=True,
|
92 |
+
show_download_button=False,
|
93 |
+
)
|
94 |
|
|
|
95 |
chatbot = gr.Chatbot(value=[(None, f"{initial_message}")], label=f"Clinical Interview ๐ฟ๐")
|
96 |
with gr.Row():
|
97 |
msg = gr.Textbox(label="Type your message here...", scale=3)
|
98 |
+
audio_input = gr.Audio(sources=(["microphone"]), label="Record your message", type="filepath", scale=1)
|
99 |
send_button = gr.Button("Send")
|
100 |
pdf_output = gr.File(label="Download Report", visible=False)
|
101 |
|
102 |
def user(user_message, audio, history):
|
|
|
103 |
if audio is not None:
|
104 |
user_message = transcribe_audio(audio)
|
|
|
|
|
105 |
return "", None, history + [[user_message, None]]
|
106 |
|
107 |
+
def bot_response(chatbot, message, voice_selection):
|
108 |
+
global question_count, temp_audio_files, selected_interviewer
|
109 |
+
selected_interviewer = voice_selection
|
110 |
question_count += 1
|
111 |
|
|
|
112 |
last_user_message = chatbot[-1][0] if chatbot else message
|
113 |
|
114 |
+
voice = "alloy" if selected_interviewer == "Sarah" else "onyx"
|
115 |
+
response, audio_buffer = respond(chatbot, last_user_message, voice, selected_interviewer)
|
116 |
|
|
|
117 |
for bot_message in response:
|
118 |
chatbot.append((None, bot_message[1]))
|
119 |
|
|
|
122 |
temp_audio_path = temp_file.name
|
123 |
temp_file.write(audio_buffer.getvalue())
|
124 |
temp_audio_files.append(temp_audio_path)
|
125 |
+
audio_output = gr.Audio(value=temp_audio_path, label=voice_selection, autoplay=True)
|
126 |
else:
|
127 |
+
audio_output = gr.Audio(value=audio_buffer, label=voice_selection, autoplay=True)
|
128 |
|
129 |
if question_count >= n_of_questions():
|
130 |
conclusion_message = "Thank you for participating in this interview. We have reached the end of our session. I hope this conversation has been helpful. Take care!"
|
131 |
chatbot.append((None, conclusion_message))
|
132 |
|
133 |
conclusion_audio_buffer = BytesIO()
|
134 |
+
convert_text_to_speech(conclusion_message, conclusion_audio_buffer, voice)
|
135 |
conclusion_audio_buffer.seek(0)
|
136 |
|
137 |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
138 |
temp_audio_path = temp_file.name
|
139 |
temp_file.write(conclusion_audio_buffer.getvalue())
|
140 |
temp_audio_files.append(temp_audio_path)
|
141 |
+
audio_output = gr.Audio(value=temp_audio_path, label=voice_selection, autoplay=True)
|
142 |
|
|
|
143 |
report_content, pdf_path = generate_interview_report(interview_history, language)
|
|
|
|
|
144 |
chatbot.append((None, f"Interview Report:\n\n{report_content}"))
|
145 |
|
146 |
+
return chatbot, audio_output, gr.File(visible=True, value=pdf_path)
|
147 |
|
148 |
+
return chatbot, audio_output, gr.File(visible=False)
|
149 |
|
150 |
msg.submit(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
|
151 |
+
bot_response, [chatbot, msg, voice_radio], [chatbot, audio_output, pdf_output]
|
152 |
)
|
153 |
|
154 |
send_button.click(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
|
155 |
+
bot_response, [chatbot, msg, voice_radio], [chatbot, audio_output, pdf_output]
|
156 |
)
|
157 |
|
158 |
reset_button.click(
|
159 |
reset_interview_action,
|
160 |
+
inputs=[voice_radio],
|
161 |
+
outputs=[chatbot, audio_output, msg]
|
162 |
)
|
163 |
|
164 |
with gr.Tab("Upload Document"):
|
|
|
179 |
outputs=[report_output, pdf_output, pdf_output]
|
180 |
)
|
181 |
with gr.Tab("Description"):
|
182 |
+
with open('appendix/description.txt', 'r', encoding='utf-8') as file:
|
183 |
description_txt = file.read()
|
184 |
gr.Markdown(description_txt)
|
185 |
gr.HTML("<div style='height: 15px;'></div>")
|
186 |
+
gr.Image(value="appendix/diagram.png", label='diagram', width=700, scale=1, show_label=False,
|
187 |
+
show_download_button=False, show_share_button=False)
|
|
|
188 |
|
189 |
+
return demo
|
190 |
|
191 |
# Clean up function
|
192 |
def cleanup():
|
|
|
199 |
if initial_audio_path and os.path.exists(initial_audio_path):
|
200 |
os.unlink(initial_audio_path)
|
201 |
|
|
|
202 |
if __name__ == "__main__":
|
203 |
app = create_app()
|
204 |
try:
|