File size: 5,455 Bytes
162ac6d e48aa26 162ac6d fff7a83 162ac6d e48aa26 162ac6d e48aa26 162ac6d e48aa26 162ac6d e48aa26 162ac6d 38ba782 162ac6d 5286b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib
matplotlib.rcParams['figure.dpi'] = 500
matplotlib.rcParams['savefig.dpi'] = 500
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
try:
print("Starting video processing...")
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
print("Video processing completed.")
if isinstance(results[0], str) and results[0].startswith("Error"):
print(f"Error occurred: {results[0]}")
return [results[0]] + [None] * 18
exec_time, results_summary, df, mse_embeddings, mse_posture, \
mse_plot_embeddings, mse_histogram_embeddings, \
mse_plot_posture, mse_histogram_posture, \
mse_heatmap_embeddings, mse_heatmap_posture, \
face_samples_frequent, face_samples_other, \
anomaly_faces_embeddings, anomaly_frames_posture_images, \
aligned_faces_folder, frames_folder = results
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings]
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images]
face_samples_frequent = [Image.open(path) for path in face_samples_frequent]
face_samples_other = [Image.open(path) for path in face_samples_other]
output = [
exec_time, results_summary,
df, mse_embeddings, mse_posture,
mse_plot_embeddings, mse_plot_posture,
mse_histogram_embeddings, mse_histogram_posture,
mse_heatmap_embeddings, mse_heatmap_posture,
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
face_samples_frequent, face_samples_other,
aligned_faces_folder, frames_folder,
mse_embeddings, mse_posture,
]
return output
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(error_message)
import traceback
traceback.print_exc()
return [error_message] + [None] * 18
with gr.Blocks() as iface:
gr.Markdown("""
# Facial Expression and Body Language Anomaly Detection
This application analyzes videos to detect anomalies in facial features and body language.
It processes the video frames to extract facial embeddings and body posture,
then uses machine learning techniques to identify unusual patterns or deviations from the norm.
For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
""")
with gr.Row():
video_input = gr.Video()
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold")
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second")
process_btn = gr.Button("Detect Anomalies")
progress_bar = gr.Progress()
execution_time = gr.Number(label="Execution Time (seconds)")
with gr.Group(visible=False) as results_group:
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
with gr.Tab("Facial Features"):
mse_features_plot = gr.Plot(label="MSE: Facial Features")
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
with gr.Tab("Body Posture"):
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
with gr.Tab("Face Samples"):
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto")
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto")
df_store = gr.State()
mse_features_store = gr.State()
mse_posture_store = gr.State()
aligned_faces_folder_store = gr.State()
frames_folder_store = gr.State()
mse_heatmap_embeddings_store = gr.State()
mse_heatmap_posture_store = gr.State()
process_btn.click(
process_and_show_completion,
inputs=[video_input, anomaly_threshold, fps_slider],
outputs=[
execution_time, results_text, df_store,
mse_features_store, mse_posture_store,
mse_features_plot, mse_posture_plot,
mse_features_hist, mse_posture_hist,
mse_features_heatmap, mse_posture_heatmap,
anomaly_frames_features, anomaly_frames_posture,
face_samples_most_frequent, face_samples_others,
aligned_faces_folder_store, frames_folder_store,
mse_heatmap_embeddings_store, mse_heatmap_posture_store
]
).then(
lambda: gr.Group(visible=True),
inputs=None,
outputs=[results_group]
)
if __name__ == "__main__":
iface.launch() |