Update app.py
Browse files
app.py
CHANGED
@@ -53,8 +53,8 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
53 |
traceback.print_exc()
|
54 |
return [error_message] + [None] * 27
|
55 |
|
56 |
-
def show_results(
|
57 |
-
return [gr.Tab.update(visible=True) for _ in range(4)] + [gr.Tab.update(visible=False)], gr.Group(visible=True)
|
58 |
|
59 |
def hide_description_show_results():
|
60 |
return [gr.Tab.update(visible=False)] + [gr.Tab.update(visible=True) for _ in range(4)]
|
@@ -73,7 +73,8 @@ with gr.Blocks() as iface:
|
|
73 |
execution_time = gr.Number(label="Execution Time (seconds)")
|
74 |
|
75 |
with gr.Tabs() as all_tabs:
|
76 |
-
|
|
|
77 |
gr.Markdown("""
|
78 |
# Multimodal Behavioral Anomalies Detection
|
79 |
|
@@ -81,7 +82,8 @@ with gr.Blocks() as iface:
|
|
81 |
It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
|
82 |
""")
|
83 |
|
84 |
-
|
|
|
85 |
results_text = gr.TextArea(label="Faces Breakdown", lines=5)
|
86 |
mse_features_plot = gr.Plot(label="MSE: Facial Features")
|
87 |
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
|
@@ -89,18 +91,21 @@ with gr.Blocks() as iface:
|
|
89 |
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
|
90 |
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")
|
91 |
|
92 |
-
|
|
|
93 |
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
|
94 |
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
|
95 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
96 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
97 |
|
98 |
-
|
|
|
99 |
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
100 |
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
101 |
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
102 |
|
103 |
-
|
|
|
104 |
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
105 |
combined_mse_plot = gr.Plot(label="Combined MSE Plot")
|
106 |
correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")
|
@@ -118,7 +123,7 @@ with gr.Blocks() as iface:
|
|
118 |
process_btn.click(
|
119 |
hide_description_show_results,
|
120 |
inputs=None,
|
121 |
-
outputs=
|
122 |
).then(
|
123 |
process_and_show_completion,
|
124 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
@@ -137,7 +142,7 @@ with gr.Blocks() as iface:
|
|
137 |
).then(
|
138 |
show_results,
|
139 |
inputs=None,
|
140 |
-
outputs=[all_tabs
|
141 |
)
|
142 |
|
143 |
if __name__ == "__main__":
|
|
|
53 |
traceback.print_exc()
|
54 |
return [error_message] + [None] * 27
|
55 |
|
56 |
+
def show_results():
|
57 |
+
return [gr.Tab.update(visible=True) for _ in range(4)] + [gr.Tab.update(visible=False)], gr.Group.update(visible=True)
|
58 |
|
59 |
def hide_description_show_results():
|
60 |
return [gr.Tab.update(visible=False)] + [gr.Tab.update(visible=True) for _ in range(4)]
|
|
|
73 |
execution_time = gr.Number(label="Execution Time (seconds)")
|
74 |
|
75 |
with gr.Tabs() as all_tabs:
|
76 |
+
description_tab = gr.Tab("Description")
|
77 |
+
with description_tab:
|
78 |
gr.Markdown("""
|
79 |
# Multimodal Behavioral Anomalies Detection
|
80 |
|
|
|
82 |
It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
|
83 |
""")
|
84 |
|
85 |
+
facial_features_tab = gr.Tab("Facial Features", visible=False)
|
86 |
+
with facial_features_tab:
|
87 |
results_text = gr.TextArea(label="Faces Breakdown", lines=5)
|
88 |
mse_features_plot = gr.Plot(label="MSE: Facial Features")
|
89 |
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
|
|
|
91 |
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
|
92 |
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")
|
93 |
|
94 |
+
body_posture_tab = gr.Tab("Body Posture", visible=False)
|
95 |
+
with body_posture_tab:
|
96 |
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
|
97 |
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
|
98 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
99 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
100 |
|
101 |
+
voice_tab = gr.Tab("Voice", visible=False)
|
102 |
+
with voice_tab:
|
103 |
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
104 |
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
105 |
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
106 |
|
107 |
+
combined_tab = gr.Tab("Combined", visible=False)
|
108 |
+
with combined_tab:
|
109 |
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
110 |
combined_mse_plot = gr.Plot(label="Combined MSE Plot")
|
111 |
correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap")
|
|
|
123 |
process_btn.click(
|
124 |
hide_description_show_results,
|
125 |
inputs=None,
|
126 |
+
outputs=[description_tab, facial_features_tab, body_posture_tab, voice_tab, combined_tab]
|
127 |
).then(
|
128 |
process_and_show_completion,
|
129 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
|
|
142 |
).then(
|
143 |
show_results,
|
144 |
inputs=None,
|
145 |
+
outputs=[all_tabs, execution_time_group]
|
146 |
)
|
147 |
|
148 |
if __name__ == "__main__":
|