Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,110 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import
|
4 |
-
from torchaudio.transforms import Resample
|
5 |
-
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
"MelodyMachine/Deepfake-audio-detection-V2"
|
10 |
-
)
|
11 |
-
model = AutoModelForAudioClassification.from_pretrained(
|
12 |
-
"MelodyMachine/Deepfake-audio-detection-V2"
|
13 |
-
)
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
resampler = Resample(orig_sr, TARGET_SR)
|
28 |
-
waveform = resampler(waveform)
|
29 |
-
|
30 |
-
# Prepare inputs
|
31 |
-
inputs = feature_extractor(
|
32 |
-
waveform, sampling_rate=TARGET_SR, return_tensors="pt"
|
33 |
)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
)
|
54 |
|
55 |
if __name__ == "__main__":
|
56 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import pipeline
|
|
|
|
|
4 |
|
5 |
+
# Initialize the pipeline
|
6 |
+
pipe = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2")
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
def detect_deepfake(audio_file):
|
9 |
+
"""
|
10 |
+
Detect if an audio file is deepfake or real
|
11 |
+
"""
|
12 |
+
try:
|
13 |
+
if audio_file is None:
|
14 |
+
return "Please upload an audio file"
|
15 |
+
|
16 |
+
# Run the classification
|
17 |
+
result = pipe(audio_file)
|
18 |
+
|
19 |
+
# Format the results
|
20 |
+
predictions = {}
|
21 |
+
confidence_text = ""
|
22 |
+
|
23 |
+
for item in result:
|
24 |
+
label = item['label']
|
25 |
+
score = item['score']
|
26 |
+
predictions[label] = score
|
27 |
+
confidence_text += f"{label}: {score:.4f} ({score*100:.2f}%)\n"
|
28 |
+
|
29 |
+
# Determine the prediction
|
30 |
+
top_prediction = max(predictions, key=predictions.get)
|
31 |
+
confidence = predictions[top_prediction]
|
32 |
+
|
33 |
+
# Create a more readable result
|
34 |
+
if 'fake' in top_prediction.lower() or 'deepfake' in top_prediction.lower():
|
35 |
+
main_result = f"⚠️ **DEEPFAKE DETECTED** (Confidence: {confidence*100:.1f}%)"
|
36 |
+
color = "red"
|
37 |
+
else:
|
38 |
+
main_result = f"✅ **REAL AUDIO** (Confidence: {confidence*100:.1f}%)"
|
39 |
+
color = "green"
|
40 |
+
|
41 |
+
detailed_results = f"**Detailed Results:**\n{confidence_text}"
|
42 |
+
|
43 |
+
return f"{main_result}\n\n{detailed_results}"
|
44 |
+
|
45 |
+
except Exception as e:
|
46 |
+
return f"Error processing audio: {str(e)}"
|
47 |
|
48 |
+
# Create the Gradio interface
|
49 |
+
with gr.Blocks(title="Audio Deepfake Detection", theme=gr.themes.Soft()) as app:
|
50 |
+
gr.Markdown(
|
51 |
+
"""
|
52 |
+
# 🎵 Audio Deepfake Detection
|
53 |
+
|
54 |
+
Upload an audio file to detect if it's artificially generated (deepfake) or real.
|
55 |
+
|
56 |
+
**Supported formats:** WAV, MP3, FLAC, M4A
|
57 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
)
|
59 |
+
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column():
|
62 |
+
audio_input = gr.Audio(
|
63 |
+
label="Upload Audio File",
|
64 |
+
type="filepath",
|
65 |
+
sources=["upload"]
|
66 |
+
)
|
67 |
+
|
68 |
+
detect_btn = gr.Button(
|
69 |
+
"🔍 Analyze Audio",
|
70 |
+
variant="primary",
|
71 |
+
size="lg"
|
72 |
+
)
|
73 |
+
|
74 |
+
with gr.Column():
|
75 |
+
output_text = gr.Textbox(
|
76 |
+
label="Detection Results",
|
77 |
+
lines=8,
|
78 |
+
max_lines=10,
|
79 |
+
interactive=False
|
80 |
+
)
|
81 |
+
|
82 |
+
# Set up the event handler
|
83 |
+
detect_btn.click(
|
84 |
+
fn=detect_deepfake,
|
85 |
+
inputs=audio_input,
|
86 |
+
outputs=output_text
|
87 |
+
)
|
88 |
+
|
89 |
+
# Also trigger on audio upload
|
90 |
+
audio_input.change(
|
91 |
+
fn=detect_deepfake,
|
92 |
+
inputs=audio_input,
|
93 |
+
outputs=output_text
|
94 |
+
)
|
95 |
+
|
96 |
+
gr.Markdown(
|
97 |
+
"""
|
98 |
+
---
|
99 |
+
|
100 |
+
**Note:** This model analyzes audio characteristics to detect artificial generation.
|
101 |
+
Results are probabilities, not definitive proof.
|
102 |
+
"""
|
103 |
)
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
+
app.launch(
|
107 |
+
server_name="0.0.0.0",
|
108 |
+
server_port=7860,
|
109 |
+
share=False
|
110 |
+
)
|