Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
-
from transformers import
|
5 |
|
6 |
-
# Load the Hugging Face
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def detect_deepfake_audio(audio_path: str) -> str:
|
11 |
-
# Load audio
|
12 |
waveform, sample_rate = torchaudio.load(audio_path)
|
13 |
|
14 |
-
# Convert to mono if
|
15 |
if waveform.shape[0] > 1:
|
16 |
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
17 |
|
18 |
# Preprocess for model
|
19 |
-
inputs =
|
|
|
|
|
20 |
with torch.no_grad():
|
21 |
outputs = model(**inputs)
|
22 |
|
23 |
-
#
|
24 |
probs = torch.softmax(outputs.logits, dim=-1)[0]
|
25 |
idx = torch.argmax(probs).item()
|
26 |
label = model.config.id2label[idx]
|
@@ -28,13 +34,15 @@ def detect_deepfake_audio(audio_path: str) -> str:
|
|
28 |
|
29 |
return f"The audio is classified as **{label}** with confidence **{confidence:.2f}**"
|
30 |
|
31 |
-
#
|
32 |
with gr.Blocks() as demo:
|
33 |
-
gr.Markdown("# Audio Deepfake Detection
|
34 |
-
gr.Markdown("
|
35 |
-
audio_in = gr.Audio(source="upload", type="filepath", label="
|
36 |
txt_out = gr.Textbox(label="Result")
|
37 |
-
gr.Button("Detect").click(
|
|
|
|
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
+
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
5 |
|
6 |
+
# Load the Hugging Face feature extractor and model
|
7 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
8 |
+
"MelodyMachine/Deepfake-audio-detection-V2"
|
9 |
+
)
|
10 |
+
model = AutoModelForAudioClassification.from_pretrained(
|
11 |
+
"MelodyMachine/Deepfake-audio-detection-V2"
|
12 |
+
)
|
13 |
|
14 |
def detect_deepfake_audio(audio_path: str) -> str:
|
15 |
+
# Load any audio format via torchaudio
|
16 |
waveform, sample_rate = torchaudio.load(audio_path)
|
17 |
|
18 |
+
# Convert to mono if stereo
|
19 |
if waveform.shape[0] > 1:
|
20 |
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
21 |
|
22 |
# Preprocess for model
|
23 |
+
inputs = feature_extractor(
|
24 |
+
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
25 |
+
)
|
26 |
with torch.no_grad():
|
27 |
outputs = model(**inputs)
|
28 |
|
29 |
+
# Softmax to get class probabilities
|
30 |
probs = torch.softmax(outputs.logits, dim=-1)[0]
|
31 |
idx = torch.argmax(probs).item()
|
32 |
label = model.config.id2label[idx]
|
|
|
34 |
|
35 |
return f"The audio is classified as **{label}** with confidence **{confidence:.2f}**"
|
36 |
|
37 |
+
# Gradio UI
|
38 |
with gr.Blocks() as demo:
|
39 |
+
gr.Markdown("# Audio Deepfake Detection")
|
40 |
+
gr.Markdown("Upload an audio clip to check for deepfake content.")
|
41 |
+
audio_in = gr.Audio(source="upload", type="filepath", label="Audio File")
|
42 |
txt_out = gr.Textbox(label="Result")
|
43 |
+
gr.Button("Detect").click(
|
44 |
+
fn=detect_deepfake_audio, inputs=audio_in, outputs=txt_out
|
45 |
+
)
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
demo.launch()
|