Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from transformers import AutoProcessor, AutoModelForAudioClassification
|
5 |
+
|
6 |
+
# Load the Hugging Face processor and model for audio deepfake detection.
|
7 |
+
processor = AutoProcessor.from_pretrained("MelodyMachine/Deepfake-audio-detection-V2")
|
8 |
+
model = AutoModelForAudioClassification.from_pretrained("MelodyMachine/Deepfake-audio-detection-V2")
|
9 |
+
|
10 |
+
def detect_deepfake_audio(audio_path: str) -> str:
|
11 |
+
# Load audio (supports WAV, MP3, FLAC, etc.)
|
12 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
13 |
+
|
14 |
+
# Convert to mono if necessary
|
15 |
+
if waveform.shape[0] > 1:
|
16 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
17 |
+
|
18 |
+
# Preprocess for model
|
19 |
+
inputs = processor(waveform, sampling_rate=sample_rate, return_tensors="pt")
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = model(**inputs)
|
22 |
+
|
23 |
+
# Get prediction
|
24 |
+
probs = torch.softmax(outputs.logits, dim=-1)[0]
|
25 |
+
idx = torch.argmax(probs).item()
|
26 |
+
label = model.config.id2label[idx]
|
27 |
+
confidence = probs[idx].item()
|
28 |
+
|
29 |
+
return f"The audio is classified as **{label}** with confidence **{confidence:.2f}**"
|
30 |
+
|
31 |
+
# Build Gradio interface
|
32 |
+
with gr.Blocks() as demo:
|
33 |
+
gr.Markdown("# Audio Deepfake Detection App")
|
34 |
+
gr.Markdown("### Upload or record an audio clip to detect deepfake content.")
|
35 |
+
audio_in = gr.Audio(source="upload", type="filepath", label="Upload Audio")
|
36 |
+
txt_out = gr.Textbox(label="Result")
|
37 |
+
gr.Button("Detect").click(fn=detect_deepfake_audio, inputs=audio_in, outputs=txt_out)
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
demo.launch()
|