Spaces:
Sleeping
Sleeping
import numpy as np | |
import faiss | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def test_faiss(): | |
try: | |
# Create a small test index | |
dimension = 64 | |
nb = 100 | |
# Generate random data | |
xb = np.random.random((nb, dimension)).astype('float32') | |
# Create index | |
index = faiss.IndexFlatL2(dimension) | |
# Add vectors | |
index.add(xb) | |
# Test search | |
k = 5 | |
xq = np.random.random((1, dimension)).astype('float32') | |
D, I = index.search(xq, k) | |
logger.info("FAISS test successful!") | |
logger.info(f"Found {k} nearest neighbors") | |
return True | |
except Exception as e: | |
logger.error(f"FAISS test failed: {str(e)}") | |
return False | |
import torch | |
def test_torch(): | |
try: | |
x = torch.rand(5, 3) | |
print("PyTorch is working correctly. Tensor:", x) | |
except Exception as e: | |
print("Error with PyTorch:", e) | |
if __name__ == "__main__": | |
test_faiss() | |
test_torch() |