|
import os
|
|
import sys
|
|
import numpy as np
|
|
import ctypes, ctypes.util
|
|
from enum import Enum
|
|
from ctypes import *
|
|
from numpy.ctypeslib import ndpointer
|
|
|
|
def print_log(fmt): print("[LOG] \033[98m{}\033[00m" .format(fmt))
|
|
def print_info(fmt): print("[INFO] \033[92m{}\033[00m" .format(fmt))
|
|
def print_error(fmt): print("[ERR] \033[91m{}\033[00m" .format(fmt))
|
|
def print_warning(fmt): print("[WARNING] \033[93m{}\033[00m" .format(fmt))
|
|
|
|
class ENGINE_CODE(Enum):
|
|
E_NO_FACE = 0
|
|
E_ACTIVATION_ERROR = -1
|
|
E_ENGINE_INIT_ERROR = -2
|
|
|
|
lib_path = os.path.abspath(os.path.dirname(__file__)) + '/librecognition_v6.so'
|
|
lib = cdll.LoadLibrary(lib_path)
|
|
|
|
get_version = lib.ttv_version
|
|
get_version.argtypes = []
|
|
get_version.restype = ctypes.c_char_p
|
|
|
|
get_deviceid = lib.ttv_get_hwid
|
|
get_deviceid.argtypes = []
|
|
get_deviceid.restype = ctypes.c_char_p
|
|
|
|
init_sdk = lib.ttv_init
|
|
init_sdk.argtypes = [ctypes.c_char_p, ctypes.c_char_p]
|
|
init_sdk.restype = ctypes.c_int32
|
|
|
|
init_sdk_offline = lib.ttv_init_offline
|
|
init_sdk_offline.argtypes = [ctypes.c_char_p, ctypes.c_char_p]
|
|
init_sdk_offline.restype = ctypes.c_int32
|
|
|
|
extract_template = lib.ttv_extract_feature
|
|
extract_template.argtypes = [ndpointer(ctypes.c_ubyte, flags='C_CONTIGUOUS'), ctypes.c_int32, ctypes.c_int32, ndpointer(ctypes.c_int32, flags='C_CONTIGUOUS'), ndpointer(ctypes.c_ubyte, flags='C_CONTIGUOUS'), ndpointer(ctypes.c_int32, flags='C_CONTIGUOUS')]
|
|
extract_template.restype = ctypes.c_int
|
|
|
|
calculate_similarity = lib.ttv_compare_feature
|
|
calculate_similarity.argtypes = [ndpointer(ctypes.c_ubyte, flags='C_CONTIGUOUS'), ndpointer(ctypes.c_ubyte, flags='C_CONTIGUOUS')]
|
|
calculate_similarity.restype = ctypes.c_double
|
|
|
|
DEFAULT_THRESHOLD = 0.67
|
|
def compare_face(image_mat1, image_mat2, match_threshold=DEFAULT_THRESHOLD):
|
|
result = ""
|
|
if image_mat1 is None:
|
|
result = "Failed to open image1"
|
|
return result, None, None, None
|
|
|
|
if image_mat2 is None:
|
|
result = "Failed to open image2"
|
|
return result, None, None, None
|
|
|
|
face_bbox_1 = np.zeros([4], dtype=np.int32)
|
|
template_1 = np.zeros([2048], dtype=np.uint8)
|
|
template_len_1 = np.zeros([1], dtype=np.int32)
|
|
width_1 = image_mat1.shape[1]
|
|
height_1 = image_mat1.shape[0]
|
|
|
|
ret = extract_template(image_mat1, width_1, height_1, face_bbox_1, template_1, template_len_1)
|
|
if ret <= 0:
|
|
if ret == ENGINE_CODE.E_ACTIVATION_ERROR.value:
|
|
result = "ACTIVATION ERROR"
|
|
elif ret == ENGINE_CODE.E_ENGINE_INIT_ERROR.value:
|
|
result = "ENGINE INIT ERROR"
|
|
elif ret == ENGINE_CODE.E_NO_FACE.value:
|
|
result = "NO FACE in image1"
|
|
return result, None, None, None
|
|
|
|
|
|
face_bbox_2 = np.zeros([4], dtype=np.int32)
|
|
template_2 = np.zeros([2048], dtype=np.uint8)
|
|
template_len_2 = np.zeros([1], dtype=np.int32)
|
|
width_2 = image_mat2.shape[1]
|
|
height_2 = image_mat2.shape[0]
|
|
|
|
ret = extract_template(image_mat2, width_2, height_2, face_bbox_2, template_2, template_len_2)
|
|
if ret <= 0:
|
|
if ret == ENGINE_CODE.E_ACTIVATION_ERROR.value:
|
|
result = "ACTIVATION ERROR"
|
|
elif ret == ENGINE_CODE.E_ENGINE_INIT_ERROR.value:
|
|
result = "ENGINE INIT ERROR"
|
|
elif ret == ENGINE_CODE.E_NO_FACE.value:
|
|
result = "NO FACE in image2"
|
|
return result, None, None, None
|
|
|
|
match_score = calculate_similarity(template_1, template_2)
|
|
if match_score > match_threshold:
|
|
result = "SAME PERSON"
|
|
else:
|
|
result = "DIFFERENT PERSON"
|
|
|
|
return result, match_score, [face_bbox_1, face_bbox_2], [template_1, template_2]
|
|
|