|
import sys
|
|
sys.path.append('../')
|
|
|
|
import os
|
|
import gradio as gr
|
|
import cv2
|
|
import time
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from engine.header import *
|
|
|
|
file_path = os.path.abspath(__file__)
|
|
gradio_path = os.path.dirname(file_path)
|
|
root_path = os.path.dirname(gradio_path)
|
|
|
|
version = get_version().decode('utf-8')
|
|
print_info('\t <Recognito Face Recognition> \t version {}'.format(version))
|
|
|
|
device_id = get_deviceid().decode('utf-8')
|
|
print_info('\t <Hardware ID> \t\t {}'.format(device_id))
|
|
|
|
g_activation_result = -1
|
|
MATCH_THRESHOLD = 0.67
|
|
|
|
css = """
|
|
.example-image img{
|
|
display: flex; /* Use flexbox to align items */
|
|
justify-content: center; /* Center the image horizontally */
|
|
align-items: center; /* Center the image vertically */
|
|
height: 300px; /* Set the height of the container */
|
|
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
|
|
}
|
|
|
|
.example-image{
|
|
display: flex; /* Use flexbox to align items */
|
|
justify-content: center; /* Center the image horizontally */
|
|
align-items: center; /* Center the image vertically */
|
|
height: 350px; /* Set the height of the container */
|
|
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
|
|
}
|
|
|
|
.face-row {
|
|
display: flex;
|
|
justify-content: space-around; /* Distribute space evenly between elements */
|
|
align-items: center; /* Align items vertically */
|
|
width: 100%; /* Set the width of the row to 100% */
|
|
}
|
|
|
|
.face-image{
|
|
justify-content: center; /* Center the image horizontally */
|
|
align-items: center; /* Center the image vertically */
|
|
height: 160px; /* Set the height of the container */
|
|
width: 160px;
|
|
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
|
|
}
|
|
|
|
.face-image img{
|
|
justify-content: center; /* Center the image horizontally */
|
|
align-items: center; /* Center the image vertically */
|
|
height: 160px; /* Set the height of the container */
|
|
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
|
|
}
|
|
|
|
.markdown-success-container {
|
|
background-color: #F6FFED;
|
|
padding: 20px;
|
|
margin: 20px;
|
|
border-radius: 1px;
|
|
border: 2px solid green;
|
|
text-align: center;
|
|
}
|
|
|
|
.markdown-fail-container {
|
|
background-color: #FFF1F0;
|
|
padding: 20px;
|
|
margin: 20px;
|
|
border-radius: 1px;
|
|
border: 2px solid red;
|
|
text-align: center;
|
|
}
|
|
|
|
.block-background {
|
|
# background-color: #202020; /* Set your desired background color */
|
|
border-radius: 5px;
|
|
}
|
|
|
|
"""
|
|
|
|
def activate_sdk():
|
|
online_key = os.environ.get("FR_LICENSE_KEY")
|
|
offline_key_path = os.path.join(root_path, "license.txt")
|
|
dict_path = os.path.join(root_path, "engine/bin")
|
|
|
|
ret = -1
|
|
if online_key is None:
|
|
print_warning("Recognition online license key not found!")
|
|
else:
|
|
print_info(f"FR_LICENSE_KEY: {online_key}")
|
|
ret = init_sdk(dict_path.encode('utf-8'), online_key.encode('utf-8'))
|
|
|
|
if ret == 0:
|
|
print_log("Successfully online init SDK!")
|
|
else:
|
|
print_error(f"Failed to online init SDK, Error code {ret}\n Trying offline init SDK...");
|
|
if os.path.exists(offline_key_path) is False:
|
|
print_warning("Recognition offline license key file not found!")
|
|
print_error(f"Falied to offline init SDK, Error code {ret}")
|
|
return ret
|
|
else:
|
|
ret = init_sdk_offline(dict_path.encode('utf-8'), offline_key_path.encode('utf-8'))
|
|
if ret == 0:
|
|
print_log("Successfully offline init SDK!")
|
|
else:
|
|
print_error(f"Falied to offline init SDK, Error code {ret}")
|
|
return ret
|
|
|
|
return ret
|
|
|
|
def compare_face_clicked(frame1, frame2, threshold):
|
|
global g_activation_result
|
|
if g_activation_result != 0:
|
|
gr.Warning("SDK Activation Failed!")
|
|
return None, None, None, None, None, None, None, None, None
|
|
|
|
try:
|
|
image1 = open(frame1, 'rb')
|
|
image2 = open(frame2, 'rb')
|
|
except:
|
|
raise gr.Error("Please select images files!")
|
|
|
|
image_mat1 = cv2.imdecode(np.frombuffer(image1.read(), np.uint8), cv2.IMREAD_COLOR)
|
|
image_mat2 = cv2.imdecode(np.frombuffer(image2.read(), np.uint8), cv2.IMREAD_COLOR)
|
|
start_time = time.time()
|
|
result, score, face_bboxes, face_features = compare_face(image_mat1, image_mat2, float(threshold))
|
|
end_time = time.time()
|
|
process_time = (end_time - start_time) * 1000
|
|
|
|
try:
|
|
image1 = Image.open(frame1)
|
|
image2 = Image.open(frame2)
|
|
images = [image1, image2]
|
|
|
|
face1 = Image.new('RGBA',(150, 150), (80,80,80,0))
|
|
face2 = Image.new('RGBA',(150, 150), (80,80,80,0))
|
|
faces = [face1, face2]
|
|
|
|
face_bboxes_result = []
|
|
if face_bboxes is not None:
|
|
for i, bbox in enumerate(face_bboxes):
|
|
x1 = bbox[0]
|
|
y1 = bbox[1]
|
|
x2 = bbox[2]
|
|
y2 = bbox[3]
|
|
if x1 < 0:
|
|
x1 = 0
|
|
if y1 < 0:
|
|
y1 = 0
|
|
if x2 >= images[i].width:
|
|
x2 = images[i].width - 1
|
|
if y2 >= images[i].height:
|
|
y2 = images[i].height - 1
|
|
|
|
face_bbox_str = f"x1: {x1}, y1: {y1}, x2: {x2}, y2: {y2}"
|
|
face_bboxes_result.append(face_bbox_str)
|
|
|
|
faces[i] = images[i].crop((x1, y1, x2, y2))
|
|
face_image_ratio = faces[i].width / float(faces[i].height)
|
|
resized_w = int(face_image_ratio * 150)
|
|
resized_h = 150
|
|
|
|
faces[i] = faces[i].resize((int(resized_w), int(resized_h)))
|
|
except:
|
|
pass
|
|
|
|
matching_result = Image.open(os.path.join(gradio_path, "icons/blank.png"))
|
|
similarity_score = ""
|
|
if faces[0] is not None and faces[1] is not None:
|
|
if score is not None:
|
|
str_score = str("{:.4f}".format(score))
|
|
if result == "SAME PERSON":
|
|
matching_result = Image.open(os.path.join(gradio_path, "icons/same.png"))
|
|
similarity_score = f"""<br/><div class="markdown-success-container"><p style="text-align: center; font-size: 20px; color: green;">Similarity score: {str_score}</p></div>"""
|
|
else:
|
|
matching_result = Image.open(os.path.join(gradio_path, "icons/different.png"))
|
|
similarity_score = f"""<br/><div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Similarity score: {str_score}</p></div>"""
|
|
|
|
return faces[0], faces[1], matching_result, similarity_score, face_bboxes_result[0], face_bboxes_result[1], face_features[0], face_features[1], str(process_time)
|
|
|
|
def launch_demo(activate_result):
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.Markdown(
|
|
f"""
|
|
<a href="https://recognito.vision" style="display: flex; align-items: center;">
|
|
<img src="https://recognito.vision/wp-content/uploads/2024/03/Recognito-modified.png" style="width: 3%; margin-right: 15px;"/>
|
|
</a>
|
|
<div style="display: flex; align-items: center;justify-content: center;">
|
|
<p style="font-size: 36px; font-weight: bold;">Face Recognition {version}</p>
|
|
</div>
|
|
<p style="font-size: 20px; font-weight: bold;">🤝 Contact us for our on-premise Face Recognition, Liveness Detection SDKs deployment</p>
|
|
</div>
|
|
<div style="display: flex; align-items: center;">
|
|
  <a target="_blank" href="mailto:[email protected]"><img src="https://img.shields.io/badge/[email protected]?logo=gmail " alt="www.recognito.vision"></a>
|
|
<a target="_blank" href="https://wa.me/+14158003112"><img src="https://img.shields.io/badge/whatsapp-recognito-blue.svg?logo=whatsapp " alt="www.recognito.vision"></a>
|
|
<a target="_blank" href="https://t.me/recognito_vision"><img src="https://img.shields.io/badge/[email protected]?logo=telegram " alt="www.recognito.vision"></a>
|
|
<a target="_blank" href="https://join.slack.com/t/recognito-workspace/shared_invite/zt-2d4kscqgn-"><img src="https://img.shields.io/badge/slack-recognito-blue.svg?logo=slack " alt="www.recognito.vision"></a>
|
|
</div>
|
|
<br/>
|
|
<div style="display: flex; align-items: center;">
|
|
  <a href="https://recognito.vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/recognito_64.png" style="width: 24px; margin-right: 5px;"/></a>
|
|
<a href="https://www.linkedin.com/company/recognito-vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/linkedin64.png" style="width: 24px; margin-right: 5px;"/></a>
|
|
<a href="https://huggingface.co/Recognito" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/hf1_64.png" style="width: 24px; margin-right: 5px;"/></a>
|
|
<a href="https://github.com/Recognito-Vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/github64.png" style="width: 24px; margin-right: 5px;"/></a>
|
|
<a href="https://hub.docker.com/u/recognito" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/docker64.png" style="width: 24px; margin-right: 5px;"/></a>
|
|
</div>
|
|
<br/>
|
|
"""
|
|
)
|
|
|
|
with gr.Group():
|
|
if activate_result == 0:
|
|
gr.Markdown("""<p style="text-align: left; font-size: 20px; color: green;"> Activation Success!</p>""")
|
|
else:
|
|
gr.Markdown("""<p style="text-align: left; font-size: 20px; color: red;"> Activation Failed!</p>""")
|
|
|
|
gr.Textbox(device_id, label="Hardware ID")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=2):
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
compare_face_input1 = gr.Image(label="Image1", type='filepath', elem_classes="example-image")
|
|
gr.Examples([os.path.join(root_path,'examples/1.jpg'),
|
|
os.path.join(root_path,'examples/2.jpg'),
|
|
os.path.join(root_path,'examples/3.jpg'),
|
|
os.path.join(root_path,'examples/4.jpg')],
|
|
inputs=compare_face_input1)
|
|
with gr.Column(scale=1):
|
|
compare_face_input2 = gr.Image(label="Image2", type='filepath', elem_classes="example-image")
|
|
gr.Examples([os.path.join(root_path,'examples/5.jpg'),
|
|
os.path.join(root_path,'examples/6.jpg'),
|
|
os.path.join(root_path,'examples/7.jpg'),
|
|
os.path.join(root_path,'examples/8.jpg')],
|
|
inputs=compare_face_input2)
|
|
|
|
with gr.Blocks():
|
|
with gr.Column(scale=1, min_width=400, elem_classes="block-background"):
|
|
txt_threshold = gr.Textbox(f"{MATCH_THRESHOLD}", label="Matching Threshold", interactive=True)
|
|
compare_face_button = gr.Button("Compare Face", variant="primary", size="lg")
|
|
with gr.Row(elem_classes="face-row"):
|
|
face_output1 = gr.Image(value=os.path.join(gradio_path,'icons/face.jpg'), label="Face 1", scale=0, elem_classes="face-image")
|
|
compare_result = gr.Image(value=os.path.join(gradio_path,'icons/blank.png'), min_width=30, scale=0, show_download_button=False, show_label=False)
|
|
face_output2 = gr.Image(value=os.path.join(gradio_path,'icons/face.jpg'), label="Face 2", scale=0, elem_classes="face-image")
|
|
similarity_markdown = gr.Markdown("")
|
|
txt_speed = gr.Textbox(f"", label="Processing Time (ms)", interactive=False, visible=False)
|
|
with gr.Group():
|
|
gr.Markdown(""" face1""")
|
|
txt_bbox1 = gr.Textbox(f"", label="Rect", interactive=False)
|
|
txt_feature1 = gr.Textbox(f"", label="Feature", interactive=False, max_lines=5)
|
|
with gr.Group():
|
|
gr.Markdown(""" face2""")
|
|
txt_bbox2 = gr.Textbox(f"", label="Rect", interactive=False)
|
|
txt_feature2 = gr.Textbox(f"", label="Feature", interactive=False, max_lines=5)
|
|
|
|
compare_face_button.click(compare_face_clicked, inputs=[compare_face_input1, compare_face_input2, txt_threshold], outputs=[face_output1, face_output2, compare_result, similarity_markdown, txt_bbox1, txt_bbox2, txt_feature1, txt_feature2, txt_speed])
|
|
|
|
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
|
|
|
|
if __name__ == '__main__':
|
|
g_activation_result = activate_sdk()
|
|
launch_demo(g_activation_result)
|
|
|