import os import sys import numpy as np import ctypes, ctypes.util from enum import Enum from ctypes import * from numpy.ctypeslib import ndpointer def print_log(fmt): print("[LOG] \033[98m{}\033[00m" .format(fmt)) def print_info(fmt): print("[INFO] \033[92m{}\033[00m" .format(fmt)) def print_error(fmt): print("[ERR] \033[91m{}\033[00m" .format(fmt)) def print_warning(fmt): print("[WARNING] \033[93m{}\033[00m" .format(fmt)) class ENGINE_CODE(Enum): E_NO_FACE = 0 E_ACTIVATION_ERROR = -1 E_ENGINE_INIT_ERROR = -2 lib_path = os.path.abspath(os.path.dirname(__file__)) + '/librecognition_v6.so' lib = cdll.LoadLibrary(lib_path) get_version = lib.ttv_version get_version.argtypes = [] get_version.restype = ctypes.c_char_p get_deviceid = lib.ttv_get_hwid get_deviceid.argtypes = [] get_deviceid.restype = ctypes.c_char_p init_sdk = lib.ttv_init init_sdk.argtypes = [ctypes.c_char_p, ctypes.c_char_p] init_sdk.restype = ctypes.c_int32 init_sdk_offline = lib.ttv_init_offline init_sdk_offline.argtypes = [ctypes.c_char_p, ctypes.c_char_p] init_sdk_offline.restype = ctypes.c_int32 extract_template = lib.ttv_extract_feature extract_template.argtypes = [ndpointer(ctypes.c_ubyte, flags='C_CONTIGUOUS'), ctypes.c_int32, ctypes.c_int32, ndpointer(ctypes.c_int32, flags='C_CONTIGUOUS'), ndpointer(ctypes.c_ubyte, flags='C_CONTIGUOUS'), ndpointer(ctypes.c_int32, flags='C_CONTIGUOUS')] extract_template.restype = ctypes.c_int calculate_similarity = lib.ttv_compare_feature calculate_similarity.argtypes = [ndpointer(ctypes.c_ubyte, flags='C_CONTIGUOUS'), ndpointer(ctypes.c_ubyte, flags='C_CONTIGUOUS')] calculate_similarity.restype = ctypes.c_double DEFAULT_THRESHOLD = 0.67 def compare_face(image_mat1, image_mat2, match_threshold=DEFAULT_THRESHOLD): result = "" if image_mat1 is None: result = "Failed to open image1" return result, None, None, None if image_mat2 is None: result = "Failed to open image2" return result, None, None, None face_bbox_1 = np.zeros([4], dtype=np.int32) template_1 = np.zeros([2048], dtype=np.uint8) template_len_1 = np.zeros([1], dtype=np.int32) width_1 = image_mat1.shape[1] height_1 = image_mat1.shape[0] ret = extract_template(image_mat1, width_1, height_1, face_bbox_1, template_1, template_len_1) if ret <= 0: if ret == ENGINE_CODE.E_ACTIVATION_ERROR.value: result = "ACTIVATION ERROR" elif ret == ENGINE_CODE.E_ENGINE_INIT_ERROR.value: result = "ENGINE INIT ERROR" elif ret == ENGINE_CODE.E_NO_FACE.value: result = "NO FACE in image1" return result, None, None, None face_bbox_2 = np.zeros([4], dtype=np.int32) template_2 = np.zeros([2048], dtype=np.uint8) template_len_2 = np.zeros([1], dtype=np.int32) width_2 = image_mat2.shape[1] height_2 = image_mat2.shape[0] ret = extract_template(image_mat2, width_2, height_2, face_bbox_2, template_2, template_len_2) if ret <= 0: if ret == ENGINE_CODE.E_ACTIVATION_ERROR.value: result = "ACTIVATION ERROR" elif ret == ENGINE_CODE.E_ENGINE_INIT_ERROR.value: result = "ENGINE INIT ERROR" elif ret == ENGINE_CODE.E_NO_FACE.value: result = "NO FACE in image2" return result, None, None, None match_score = calculate_similarity(template_1, template_2) if match_score > match_threshold: result = "SAME PERSON" else: result = "DIFFERENT PERSON" return result, match_score, [face_bbox_1, face_bbox_2], [template_1, template_2]