import gradio as gr import torch import random from diffusers import StableDiffusionXLPipeline from diffusers import EulerDiscreteScheduler device = "cpu" dtype = torch.float32 if torch.cuda.is_available(): device = "cuda" dtype = torch.float16 # check if MPS is available OSX only M1/M2/M3 chips mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() if mps_available: device = "mps" dtype = torch.float16 #print(f"device: {device}, dtype: {dtype}") pipeline = StableDiffusionXLPipeline.from_pretrained("recoilme/ColorfulXL-Lightning", variant="fp16", torch_dtype=dtype, use_safetensors=True) pipeline.to(device) pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing") # Comes from # https://wandb.ai/nasirk24/UNET-FreeU-SDXL/reports/FreeU-SDXL-Optimal-Parameters--Vmlldzo1NDg4NTUw if device == "cuda": pipeline.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) def generate(prompt, width, height, sample_steps, seed): generator = torch.Generator(device=device).manual_seed(int(seed)) return pipeline(prompt=prompt, prompt_2=prompt, guidance_scale=0, generator=generator, negative_prompt=None, negative_prompt_2=None, width=width, height=height, num_inference_steps=sample_steps).images[0] def random_seed(): return random.randint(0, 2**32 - 1) with gr.Blocks() as interface: with gr.Column(): with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", info="What do you want?", value="girl sitting on a small hill looking at night sky, back view, distant exploding moon", lines=4, interactive=True) with gr.Column(): generate_button = gr.Button("Generate") with gr.Accordion(label="Advanced Settings", open=False): with gr.Row(): with gr.Column(): width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=576, minimum=512, maximum=1280, step=64, interactive=True) height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=832, minimum=512, maximum=1280, step=64, interactive=True) with gr.Row(): seed = gr.Number(label="Seed", value=None, scale=8, info="Random seed for reproducibility.") seed_button = gr.Button("🎲", scale=2, elem_id="seed_button") seed_button.click(fn=random_seed, inputs=[], outputs=seed) with gr.Column(): sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=5, minimum=3, maximum=10, step=1, interactive=True) with gr.Row(): output = gr.Image() generate_button.click(fn=generate, inputs=[prompt, width, height, sampling_steps, seed], outputs=[output]) if __name__ == "__main__": interface.launch()