Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,96 @@
|
|
1 |
from huggingface_hub import InferenceClient
|
|
|
|
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
import os
|
7 |
-
TMDB_TOKEN = os.getenv("TMDB_BEARER_TOKEN")
|
8 |
|
9 |
-
# Hugging Face model
|
10 |
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
|
11 |
-
|
12 |
-
#
|
13 |
with open("reconext_file.txt", "r", encoding="utf-8") as file:
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
def preprocess_text(text):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
24 |
-
|
25 |
def create_embeddings(text_chunks):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def get_top_chunks(query, chunk_embeddings, text_chunks):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
if response.status_code == 200:
|
54 |
-
results = response.json().get("results", [])
|
55 |
-
if not results:
|
56 |
-
return "Nothin' popped up on TMDB for that 🫠"
|
57 |
-
|
58 |
-
top = results[0]
|
59 |
-
title = top.get("title") or top.get("name") or "a mystery show"
|
60 |
-
overview = top.get("overview", "No description available.")
|
61 |
-
return f"🔥 Try watching **{title}** — {overview}"
|
62 |
-
else:
|
63 |
-
return "TMDB ghosted us 👻 Try again later."
|
64 |
-
|
65 |
-
# Chatbot response function
|
66 |
def respond(message, history):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
best_chunks = get_top_chunks(message, chunk_embeddings, cleaned_chunks)
|
71 |
-
str_chunks = "\n".join(best_chunks)
|
72 |
-
|
73 |
messages = [
|
74 |
-
{
|
75 |
-
|
76 |
-
"content": f"You are a gen-z helpful chatbot that helps teenagers find their next best watch as in TV shows and movies. Speak in a chill, funny, and relatable tone, but not too long of replies. Use the info below to answer:\n{str_chunks}"
|
77 |
}
|
78 |
]
|
79 |
-
|
80 |
if history:
|
81 |
messages.extend(history)
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
response = client.chat_completion(
|
86 |
-
messages, max_tokens=300, temperature=1.3, top_p=0.6
|
87 |
)
|
88 |
return response['choices'][0]['message']['content'].strip()
|
89 |
-
|
90 |
-
|
91 |
-
chatbot = gr.ChatInterface(respond, title="📺 Gen-Z Watch Buddy")
|
92 |
-
chatbot.launch()
|
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
+
|
3 |
+
#step 1 from semantic search
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
+
import random
|
|
|
|
|
8 |
|
|
|
9 |
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
|
10 |
+
#step 2 from semantic search read file
|
11 |
+
# Open the water_cycle.txt file in read mode with UTF-8 encoding
|
12 |
with open("reconext_file.txt", "r", encoding="utf-8") as file:
|
13 |
+
# Read the entire contents of the file and store it in a variable
|
14 |
+
reconext_file_text = file.read()
|
15 |
+
# Print the text below
|
16 |
+
print(reconext_file_text)
|
17 |
+
#step 3 from semantix search
|
18 |
def preprocess_text(text):
|
19 |
+
# Strip extra whitespace from the beginning and the end of the text
|
20 |
+
cleaned_text = text.strip()
|
21 |
+
# Split the cleaned_text by every newline character (\n)
|
22 |
+
chunks = cleaned_text.split("\n")
|
23 |
+
# Create an empty list to store cleaned chunks
|
24 |
+
cleaned_chunks = []
|
25 |
+
# Write your for-in loop below to clean each chunk and add it to the cleaned_chunks list
|
26 |
+
for chunk in chunks:
|
27 |
+
clean_chunk = chunk.strip()
|
28 |
+
if(len(clean_chunk) >= 0):
|
29 |
+
cleaned_chunks.append(clean_chunk)
|
30 |
+
# Print cleaned_chunks
|
31 |
+
print(cleaned_chunks)
|
32 |
+
# Print the length of cleaned_chunks
|
33 |
+
print(len(cleaned_chunks))
|
34 |
+
# Return the cleaned_chunks
|
35 |
+
return cleaned_chunks
|
36 |
+
# Call the preprocess_text function and store the result in a cleaned_chunks variable
|
37 |
+
cleaned_chunks = preprocess_text(reconext_file_text) # Complete this line
|
38 |
+
#step 4 from semantic search
|
39 |
+
# Load the pre-trained embedding model that converts text to vectors
|
40 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
41 |
def create_embeddings(text_chunks):
|
42 |
+
# Convert each text chunk into a vector embedding and store as a tensor
|
43 |
+
chunk_embeddings = model.encode(text_chunks, convert_to_tensor=True) # Replace ... with the text_chunks list
|
44 |
+
# Print the chunk embeddings
|
45 |
+
print(chunk_embeddings)
|
46 |
+
# Print the shape of chunk_embeddings
|
47 |
+
print(chunk_embeddings.shape)
|
48 |
+
# Return the chunk_embeddings
|
49 |
+
return chunk_embeddings
|
50 |
+
# Call the create_embeddings function and store the result in a new chunk_embeddings variable
|
51 |
+
chunk_embeddings = create_embeddings(cleaned_chunks) # Complete this line
|
52 |
+
#step 5 from semantic search
|
53 |
+
# Define a function to find the most relevant text chunks for a given query, chunk_embeddings, and text_chunks
|
54 |
def get_top_chunks(query, chunk_embeddings, text_chunks):
|
55 |
+
# Convert the query text into a vector embedding
|
56 |
+
query_embedding = model.encode(query, convert_to_tensor=True) # Complete this line
|
57 |
+
# Normalize the query embedding to unit length for accurate similarity comparison
|
58 |
+
query_embedding_normalized = query_embedding / query_embedding.norm()
|
59 |
+
# Normalize all chunk embeddings to unit length for consistent comparison
|
60 |
+
chunk_embeddings_normalized = chunk_embeddings / chunk_embeddings.norm(dim=1, keepdim=True)
|
61 |
+
# Calculate cosine similarity between query and all chunks using matrix multiplication
|
62 |
+
similarities = torch.matmul(chunk_embeddings_normalized, query_embedding_normalized) # Complete this line
|
63 |
+
# Print the similarities
|
64 |
+
print(similarities)
|
65 |
+
# Find the indices of the 3 chunks with highest similarity scores
|
66 |
+
top_indices = torch.topk(similarities, k=3).indices
|
67 |
+
# Print the top indices
|
68 |
+
print(top_indices)
|
69 |
+
# Create an empty list to store the most relevant chunks
|
70 |
+
top_chunks = []
|
71 |
+
# Loop through the top indices and retrieve the corresponding text chunks
|
72 |
+
for i in top_indices:
|
73 |
+
top_chunks.append(text_chunks[i])
|
74 |
+
# Return the list of most relevant chunks
|
75 |
+
return top_chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def respond(message, history):
|
77 |
+
best_next_watch = get_top_chunks(message, chunk_embeddings, cleaned_chunks)
|
78 |
+
print(best_next_watch)
|
79 |
+
str_watch_chunks = "\n".join(best_next_watch)
|
|
|
|
|
|
|
80 |
messages = [
|
81 |
+
{"role":"system",
|
82 |
+
"content": "You are a gen-z helpful chatbot that helps teenagers find their next best watch, speak in gen-z terms and be natural. You should answer the users question based on " + str_watch_chunks + " ."
|
|
|
83 |
}
|
84 |
]
|
|
|
85 |
if history:
|
86 |
messages.extend(history)
|
87 |
+
messages.append(
|
88 |
+
{'role':'user',
|
89 |
+
'content':message}
|
90 |
+
)
|
91 |
response = client.chat_completion(
|
92 |
+
messages, max_tokens = 300, temperature=1.3, top_p=0.6
|
93 |
)
|
94 |
return response['choices'][0]['message']['content'].strip()
|
95 |
+
chatbot = gr.ChatInterface(respond, type="messages")
|
96 |
+
chatbot.launch()
|
|
|
|