redael commited on
Commit
878bac0
·
verified ·
1 Parent(s): 3b6ab63

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -31
app.py CHANGED
@@ -1,37 +1,27 @@
1
- import os
2
- os.system('sh setup.sh')
3
  import gradio as gr
4
- from huggingface_hub import InferenceClient
5
-
6
- # Initialize the Hugging Face client
7
- client = InferenceClient(model="redael/model_udc")
8
-
9
- def generate_response(message, history, system_message, max_tokens, temperature, top_p):
10
- messages = [{"role": "system", "content": system_message}]
11
-
12
- for user_message, bot_message in history:
13
- if user_message:
14
- messages.append({"role": "user", "content": user_message})
15
- if bot_message:
16
- messages.append({"role": "assistant", "content": bot_message})
17
-
18
- messages.append({"role": "user", "content": message})
19
-
20
- response = ""
21
- for token_message in client.chat_completion(
22
- messages=messages,
23
- max_tokens=max_tokens,
24
- stream=True,
25
- temperature=temperature,
26
- top_p=top_p,
27
- ):
28
- token = token_message.choices[0].delta.content
29
- response += token
30
- yield response
31
 
32
  def chat_interface(user_input, history, system_message, max_tokens, temperature, top_p):
33
- response_generator = generate_response(user_input, history, system_message, max_tokens, temperature, top_p)
34
- response = "".join([token for token in response_generator])
35
  history.append((user_input, response))
36
  return history, history
37
 
 
 
 
1
  import gradio as gr
2
+ from transformers import pipeline, set_seed
3
+
4
+ # Initialize the Hugging Face pipeline
5
+ generator = pipeline('text-generation', model='redael/model_udc')
6
+
7
+ def generate_response(prompt, max_length=100, num_beams=5, temperature=0.5, top_p=0.9, repetition_penalty=4.0):
8
+ # Prepare the prompt
9
+ prompt = f"User: {prompt}\nAssistant:"
10
+ responses = generator(prompt, max_length=max_length, num_return_sequences=1, num_beams=num_beams, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
11
+ response = responses[0]['generated_text']
12
+
13
+ # Post-processing to clean up the response
14
+ response = response.split("Assistant:")[-1].strip()
15
+ response_lines = response.split('\n')
16
+ clean_response = []
17
+ for line in response_lines:
18
+ if "User:" not in line and "Assistant:" not in line:
19
+ clean_response.append(line)
20
+ response = ' '.join(clean_response)
21
+ return response.strip()
 
 
 
 
 
 
 
22
 
23
  def chat_interface(user_input, history, system_message, max_tokens, temperature, top_p):
24
+ response = generate_response(user_input, max_length=max_tokens, temperature=temperature, top_p=top_p)
 
25
  history.append((user_input, response))
26
  return history, history
27