Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,64 @@
|
|
1 |
import os
|
2 |
os.system('sh setup.sh')
|
3 |
import gradio as gr
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
-
"""
|
9 |
-
import os
|
10 |
-
os.system('sh setup.sh')
|
11 |
-
|
12 |
-
client = InferenceClient("redael/model_udc")
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
system_message,
|
19 |
-
max_tokens,
|
20 |
-
temperature,
|
21 |
-
top_p,
|
22 |
-
):
|
23 |
-
messages = [{"role": "system", "content": system_message}]
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
for message in client.chat_completion(
|
36 |
-
messages,
|
37 |
-
max_tokens=max_tokens,
|
38 |
-
stream=True,
|
39 |
temperature=temperature,
|
40 |
top_p=top_p,
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
respond,
|
52 |
-
additional_inputs=[
|
53 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
54 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
55 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
56 |
-
gr.Slider(
|
57 |
-
minimum=0.1,
|
58 |
-
maximum=1.0,
|
59 |
-
value=0.95,
|
60 |
-
step=0.05,
|
61 |
-
label="Top-p (nucleus sampling)",
|
62 |
-
),
|
63 |
-
],
|
64 |
-
)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
os.system('sh setup.sh')
|
3 |
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model_path = "final_model"
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
10 |
+
model = GPT2LMHeadModel.from_pretrained(model_path)
|
11 |
|
12 |
+
# Check if CUDA is available and use GPU if possible
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
def generate_response(prompt, model, tokenizer, max_length=100, num_beams=5, temperature=0.5, top_p=0.9, repetition_penalty=4.0):
|
17 |
+
# Prepare the prompt
|
18 |
+
prompt = f"User: {prompt}\nAssistant:"
|
19 |
+
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device)
|
20 |
+
outputs = model.generate(
|
21 |
+
inputs['input_ids'],
|
22 |
+
max_length=max_length,
|
23 |
+
num_return_sequences=1,
|
24 |
+
pad_token_id=tokenizer.eos_token_id,
|
25 |
+
num_beams=num_beams,
|
|
|
|
|
|
|
|
|
26 |
temperature=temperature,
|
27 |
top_p=top_p,
|
28 |
+
repetition_penalty=repetition_penalty,
|
29 |
+
early_stopping=True
|
30 |
+
)
|
31 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
# Post-processing to clean up the response
|
34 |
+
response = response.split("Assistant:")[-1].strip()
|
35 |
+
response_lines = response.split('\n')
|
36 |
+
clean_response = []
|
37 |
+
for line in response_lines:
|
38 |
+
if "User:" not in line and "Assistant:" not in line:
|
39 |
+
clean_response.append(line)
|
40 |
+
response = ' '.join(clean_response)
|
41 |
+
return response.strip()
|
42 |
|
43 |
+
def chat_interface(user_input, history):
|
44 |
+
response = generate_response(user_input, model, tokenizer)
|
45 |
+
history.append((user_input, response))
|
46 |
+
return history, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
with gr.Blocks() as demo:
|
49 |
+
gr.Markdown("# Chatbot using GPT")
|
50 |
+
|
51 |
+
chatbot = gr.Chatbot()
|
52 |
+
message = gr.Textbox(placeholder="Type your question here...")
|
53 |
+
state = gr.State([])
|
54 |
+
|
55 |
+
with gr.Row():
|
56 |
+
clear = gr.Button("Clear")
|
57 |
+
submit = gr.Button("Send")
|
58 |
+
|
59 |
+
submit.click(chat_interface, [message, state], [chatbot, state])
|
60 |
+
clear.click(lambda: None, None, chatbot)
|
61 |
+
clear.click(lambda: [], None, state)
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
+
demo.launch()
|