redael commited on
Commit
da6d98b
·
verified ·
1 Parent(s): f95718f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -1,10 +1,11 @@
1
 
2
- model_name = 'redael/model_udc'
3
  import os
4
  import gradio as gr
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
  import torch
7
 
 
 
8
  tokenizer = AutoTokenizer.from_pretrained(model_name)
9
  model = AutoModelForCausalLM.from_pretrained(model_name)
10
 
@@ -41,17 +42,16 @@ def generate_response(message, history, system_message, max_tokens, temperature,
41
  )
42
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
43
 
44
- # Post-process the response
45
  response = response.split("Assistant:")[-1].strip()
46
  response_lines = response.split('\n')
47
  clean_response = []
48
  for line in response_lines:
49
  if "User:" not in line and "Assistant:" not in line:
50
  clean_response.append(line)
51
- response = ' '.join(clean_response).strip()
52
 
53
- history.append((message, response))
54
- return history, history
55
 
56
  # Create the Gradio chat interface
57
  demo = gr.ChatInterface(
 
1
 
 
2
  import os
3
  import gradio as gr
4
  from transformers import AutoModelForCausalLM, AutoTokenizer
5
  import torch
6
 
7
+ # Load your model and tokenizer from Hugging Face
8
+ model_name = 'redael/model_udc'
9
  tokenizer = AutoTokenizer.from_pretrained(model_name)
10
  model = AutoModelForCausalLM.from_pretrained(model_name)
11
 
 
42
  )
43
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
44
 
45
+ # Clean up the response
46
  response = response.split("Assistant:")[-1].strip()
47
  response_lines = response.split('\n')
48
  clean_response = []
49
  for line in response_lines:
50
  if "User:" not in line and "Assistant:" not in line:
51
  clean_response.append(line)
52
+ response = ' '.join(clean_response)
53
 
54
+ return [(message, response)]
 
55
 
56
  # Create the Gradio chat interface
57
  demo = gr.ChatInterface(