Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,42 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline, set_seed
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
responses = generator(prompt, max_length=max_length, num_return_sequences=1, num_beams=num_beams, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
|
11 |
-
response = responses[0]['generated_text']
|
12 |
-
|
13 |
-
# Post-processing to clean up the response
|
14 |
-
response = response.split("Assistant:")[-1].strip()
|
15 |
-
response_lines = response.split('\n')
|
16 |
-
clean_response = []
|
17 |
-
for line in response_lines:
|
18 |
-
if "User:" not in line and "Assistant:" not in line:
|
19 |
-
clean_response.append(line)
|
20 |
-
response = ' '.join(clean_response)
|
21 |
-
return response.strip()
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
history.append((user_input, response))
|
26 |
-
return history, history
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
clear.click(lambda: None, None, chatbot)
|
45 |
-
clear.click(lambda: [], None, state)
|
46 |
|
47 |
-
|
48 |
-
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
# Replace 'your-username/your-model-name' with the actual model name you uploaded to Hugging Face
|
6 |
+
model_name = 'redael/model_udc'
|
7 |
|
8 |
+
# Load the tokenizer and model from Hugging Face
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.to(device)
|
|
|
|
|
14 |
|
15 |
+
# Define the generate_response function
|
16 |
+
def generate_response(prompt, model=model, tokenizer=tokenizer, max_length=100, num_beams=5, temperature=0.5, top_p=0.9, repetition_penalty=4.0):
|
17 |
+
# Add context to the prompt
|
18 |
+
prompt = f"User: {prompt}\nAssistant:"
|
19 |
|
20 |
+
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device)
|
21 |
+
outputs = model.generate(
|
22 |
+
inputs['input_ids'],
|
23 |
+
max_length=max_length,
|
24 |
+
num_return_sequences=1,
|
25 |
+
pad_token_id=tokenizer.eos_token_id,
|
26 |
+
num_beams=num_beams,
|
27 |
+
temperature=temperature,
|
28 |
+
top_p=top_p,
|
29 |
+
repetition_penalty=repetition_penalty,
|
30 |
+
early_stopping=True
|
31 |
+
)
|
32 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
+
return response.strip()
|
34 |
|
35 |
+
# Define the Gradio interface
|
36 |
+
def chatbot_interface(user_input):
|
37 |
+
return generate_response(user_input)
|
38 |
|
39 |
+
iface = gr.Interface(fn=chatbot_interface, inputs="text", outputs="text", title="Chatbot", description="Ask anything to the chatbot.")
|
|
|
|
|
40 |
|
41 |
+
# Launch the Gradio interface
|
42 |
+
iface.launch()
|