|
import sys |
|
import os |
|
import json |
|
import gradio as gr |
|
sys.path.append('src') |
|
from procesador_de_cvs_con_llm import ProcesadorCV |
|
|
|
use_dotenv = False |
|
if use_dotenv: |
|
from dotenv import load_dotenv |
|
load_dotenv("../../../../../../../apis/.env") |
|
api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
else: |
|
api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
unmasked_chars = 8 |
|
masked_key = api_key[:unmasked_chars] + '*' * (len(api_key) - unmasked_chars*2) + api_key[-unmasked_chars:] |
|
print(f"API key: {masked_key}") |
|
|
|
def process_cv(job_text, cv_text, req_experience, req_experience_unit, positions_cap, dist_threshold_low, dist_threshold_high): |
|
if dist_threshold_low >= dist_threshold_high: |
|
return {"error": "dist_threshold_low must be lower than dist_threshold_high."} |
|
|
|
if not isinstance(cv_text, str) or not cv_text.strip(): |
|
return {"error": "Please provide the CV or upload a file."} |
|
|
|
|
|
if req_experience_unit == "years": |
|
req_experience = req_experience * 12 |
|
|
|
try: |
|
procesador = ProcesadorCV(api_key, cv_text, job_text, ner_pre_prompt, |
|
system_prompt, user_prompt, ner_schema, response_schema) |
|
dict_respuesta = procesador.procesar_cv_completo( |
|
req_experience=req_experience, |
|
positions_cap=positions_cap, |
|
dist_threshold_low=dist_threshold_low, |
|
dist_threshold_high=dist_threshold_high |
|
) |
|
return dict_respuesta |
|
except Exception as e: |
|
return {"error": f"Processing error: {str(e)}"} |
|
|
|
|
|
job_text = "Generative AI engineer" |
|
cv_sample_path = 'cv_examples/reddgr_cv.txt' |
|
with open(cv_sample_path, 'r', encoding='utf-8') as file: |
|
cv_text = file.read() |
|
|
|
with open('prompts/ner_pre_prompt.txt', 'r', encoding='utf-8') as f: |
|
ner_pre_prompt = f.read() |
|
with open('prompts/system_prompt.txt', 'r', encoding='utf-8') as f: |
|
system_prompt = f.read() |
|
with open('prompts/user_prompt.txt', 'r', encoding='utf-8') as f: |
|
user_prompt = f.read() |
|
|
|
with open('json/ner_schema.json', 'r', encoding='utf-8') as f: |
|
ner_schema = json.load(f) |
|
with open('json/response_schema.json', 'r', encoding='utf-8') as f: |
|
response_schema = json.load(f) |
|
|
|
|
|
with open('cv_examples/reddgr_cv.txt', 'r', encoding='utf-8') as file: |
|
cv_example = file.read() |
|
|
|
default_parameters = [4, "years", 10, 0.5, 0.7] |
|
|
|
|
|
css = """ |
|
table tbody tr { |
|
height: 2.5em; /* Set a fixed height for the rows */ |
|
overflow: hidden; /* Hide overflow content */ |
|
} |
|
|
|
table tbody tr td { |
|
overflow: hidden; /* Ensure content within cells doesn't overflow */ |
|
text-overflow: ellipsis; /* Add ellipsis for overflowing text */ |
|
white-space: nowrap; /* Prevent text from wrapping */ |
|
vertical-align: middle; /* Align text vertically within the fixed height */ |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as interface: |
|
gr.Markdown(""" |
|
Evaluate a CV against a job position using AI. Enter the job title in the 'Vacancy Title' field and paste the CV in plain text in the 'CV in Text Format' box. Specify the desired experience in months or years using the 'Required Experience'. |
|
|
|
For more control, expand the 'Advanced options' section to adjust the number of positions analyzed and set distance thresholds for relevance evaluation. |
|
|
|
Once all fields are set, click the 'Process' button to analyze the CV. The results will be displayed in a structured JSON format below. You can also reset the inputs using the 'Clear' button. |
|
|
|
At the bottom of the interface, you can find predefined examples to quickly test the app with sample data. |
|
""") |
|
|
|
job_text_input = gr.Textbox(label="Vacancy Title", lines=1, placeholder="Enter the vacancy title") |
|
gr.Markdown("Required Experience") |
|
with gr.Row(): |
|
req_experience_input = gr.Number(label="Required Experience", value=default_parameters[0], precision=0, elem_id="req_exp", show_label=False) |
|
req_experience_unit = gr.Dropdown(label="Period", choices=["months", "years"], value=default_parameters[1], elem_id="req_exp_unit", show_label=False) |
|
cv_text_input = gr.Textbox(label="CV in Text Format", lines=5, max_lines=5, placeholder="Enter the CV text") |
|
|
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
positions_cap_input = gr.Number(label="Maximum number of positions to extract", value=default_parameters[2], precision=0) |
|
dist_threshold_low_slider = gr.Slider( |
|
label="Minimum embedding distance threshold (equivalent position)", |
|
minimum=0, maximum=1, value=default_parameters[3], step=0.05 |
|
) |
|
dist_threshold_high_slider = gr.Slider( |
|
label="Maximum embedding distance threshold (irrelevant position)", |
|
minimum=0, maximum=1, value=default_parameters[4], step=0.05 |
|
) |
|
|
|
submit_button = gr.Button("Process") |
|
clear_button = gr.Button("Clear") |
|
|
|
output_json = gr.JSON(label="Result") |
|
|
|
|
|
examples = gr.Examples( |
|
examples=[ |
|
["Supermarket cashier", "Deli worker since 2021. Previously worked 2 months as a waiter in a tapas bar."] + default_parameters, |
|
["Generative AI Engineer", cv_example] + default_parameters |
|
], |
|
inputs=[job_text_input, cv_text_input, req_experience_input, req_experience_unit, positions_cap_input, dist_threshold_low_slider, dist_threshold_high_slider] |
|
) |
|
|
|
|
|
submit_button.click( |
|
fn=process_cv, |
|
inputs=[ |
|
job_text_input, |
|
cv_text_input, |
|
req_experience_input, |
|
req_experience_unit, |
|
positions_cap_input, |
|
dist_threshold_low_slider, |
|
dist_threshold_high_slider |
|
], |
|
outputs=output_json |
|
) |
|
|
|
|
|
clear_button.click( |
|
fn=lambda: ("","",*default_parameters), |
|
inputs=[], |
|
outputs=[ |
|
job_text_input, |
|
cv_text_input, |
|
req_experience_input, |
|
req_experience_unit, |
|
positions_cap_input, |
|
dist_threshold_low_slider, |
|
dist_threshold_high_slider |
|
] |
|
) |
|
|
|
|
|
gr.Markdown(""" |
|
<footer> |
|
<p>You can view the complete code for this app and the explanatory notebooks on |
|
<a href='https://github.com/reddgr/procesador-de-curriculos-cv' target='_blank'>GitHub</a></p> |
|
<p>© 2024 <a href='https://talkingtochatbots.com' target='_blank'>talkingtochatbots.com</a></p> |
|
</footer> |
|
""") |
|
|
|
|
|
if __name__ == "__main__": |
|
interface.launch() |