File size: 18,151 Bytes
b51b4a2
 
 
 
 
 
 
 
 
 
 
 
 
 
e6c7897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b51b4a2
 
e6c7897
b51b4a2
e6c7897
 
 
 
b51b4a2
 
 
 
 
e6c7897
 
 
 
 
 
 
 
 
b51b4a2
e6c7897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b51b4a2
e6c7897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
'''
Swift Stock Screener (SSS)
Copyright 2025 David González Romero

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

App URL: https://huggingface.co/spaces/reddgr/sss
'''

# cd C:\Users\david\Documents\git\miax-tfm-dgr; python app.py
from pathlib import Path
from typing import Tuple
import pandas as pd
import gradio as gr
import json

import duckdb
from sentence_transformers import SentenceTransformer
from datasets import load_dataset

USE_DOTENV = False

ROOT = Path(__file__).parent

JSON_PATH = ROOT / "json"
DATASET_PATH = "reddgr/swift-stock-screener" # Hugging Face hub dataset name
EMB_MODEL_PATH = "FinLang/finance-embeddings-investopedia" # Hugging Face Hub embeddings model name
DOTENV_PATH = ROOT.parent.parent / "apis" / ".env"
PARQUET_PATH = ROOT / "parquet" / "app_dataset.parquet"
# DUCKDB_PATH = ROOT / "db" / "sss_vectordb.duckdb"

from src import front_dataset_handler as fdh, app_utils as utils, semantic_search as ss, env_options
tokens = env_options.check_env(use_dotenv=USE_DOTENV, dotenv_path=DOTENV_PATH, env_tokens = ["HF_TOKEN"])

emb_model = SentenceTransformer(EMB_MODEL_PATH, token = tokens.get("HF_TOKEN"))


#### CONEXIÓN DE DUCKDB CON EL DATASET PARA INDEXAR ####
print("Initializing DuckDB connection...")
con = duckdb.connect()

create_table_query = f"""
        INSTALL vss;
        LOAD vss;
        SET hnsw_enable_experimental_persistence = true;
        CREATE TABLE vector_table AS 
        SELECT *, embeddings::float[{emb_model.get_sentence_embedding_dimension()}] as embeddings_float 
        FROM '{PARQUET_PATH}';
        """

con.sql(create_table_query)

print("Indexing data for vector search...")
create_index_query = f"""
        CREATE INDEX sss_hnsw_index ON vector_table USING HNSW (embeddings_float) WITH (metric = 'cosine');
        """
con.sql(create_index_query)

# ESTADO GLOBAL
last_result_df: pd.DataFrame = pd.DataFrame()
last_search_type: str = ""
last_search_query: str = ""
last_column_filters: list[tuple[str, str]] = []
last_sort_col_label: str = ""
last_sort_dir: str = ""

# ---------------------------------------------------------------------------
# CONFIG --------------------------------------------------------------------
# ---------------------------------------------------------------------------
app_dataset = load_dataset(DATASET_PATH, split="train", token = tokens.get("HF_TOKEN")).to_pandas()

dh_app = fdh.FrontDatasetHandler(app_dataset=app_dataset)
maestro = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='EQUITY'].copy()
maestro_etf = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='ETF'].copy()

with open(JSON_PATH / "app_column_config.json", "r") as f:
    variables_busq_norm = json.load(f)["variables_busq_norm"]

with open(JSON_PATH / "app_column_config.json", "r") as f:
    caracteristicas = json.load(f)["cols_tabla_equity"]

with open(JSON_PATH / "app_column_config.json", "r") as f:
    caracteristicas_etf = json.load(f)["cols_tabla_etfs"]

with open(JSON_PATH / "cat_cols.json", "r") as f:
    cat_cols = json.load(f)["cat_cols"]

with open(JSON_PATH / "col_names_map.json", "r") as f:
    rename_columns = json.load(f)["col_names_map"]

with open(JSON_PATH / "gamma_params.json", "r") as f:
    gamma_params = json.load(f)

with open(JSON_PATH / "semantic_search_params.json", "r") as f:
    semantic_search_params = json.load(f)["semantic_search_params"]

# Columnas a estilizar en rojo si son negativas
neg_display_cols = [rename_columns.get(c, c)
                    for c in ("ret_365", "revenueGrowth")]

# Parámetros de la función de distribución de distancias:
shape, loc, scale = gamma_params["shape"], gamma_params["loc"], gamma_params["scale"]
max_dist, precision_cdf = gamma_params["max_dist"], gamma_params["precision_cdf"]
y_cdf, _ = dh_app.configura_distr_prob(shape, loc, scale, max_dist, precision_cdf)

# Parámetros de la de búsqueda VSS:
k = semantic_search_params["k"]
brevity_penalty = semantic_search_params["brevity_penalty"]
reward_for_literal = semantic_search_params["reward_for_literal"]
partial_match_factor = semantic_search_params["partial_match_factor"]
print(f"VSS params: k={k}, brevity_penalty={brevity_penalty}, reward_for_literal={reward_for_literal}, partial_match_factor={partial_match_factor}")

filtros_keys = caracteristicas[2:]

MAX_ROWS = 13000
ROWS_PER_PAGE = 100

# ---------------------------------------------------------------------------
# FUNCIONES UI --------------------------------------------------------------
# ---------------------------------------------------------------------------

# Dejamos en este módulo (en lugar de app_utils) funciones específicas de gestión de la interfaz

def _paginate(df: pd.DataFrame, page: int, per_page: int = ROWS_PER_PAGE) -> Tuple[pd.DataFrame, str]:
    total_pages = max(1, (len(df) + per_page - 1) // per_page)
    page        = max(1, min(page, total_pages))
    slice_df    = df.iloc[(page-1)*per_page : (page-1)*per_page + per_page]
    slice_df = utils.styler_negative_red(slice_df, cols=neg_display_cols)
    return slice_df, f"Page {page} of {total_pages}"


def search_dynamic(ticker: str, page: int, *filtros_values) -> Tuple[pd.DataFrame, str]:
    global last_result_df

    ticker = ticker.upper().strip()
    if ticker == "":
        last_result_df = pd.DataFrame()
        return pd.DataFrame(), "Page 1 of 1"

    filtros = dict(zip(filtros_keys, filtros_values))

    neighbors_df = dh_app.vecinos_cercanos(
        df=maestro,
        variables_busq=variables_busq_norm,
        caracteristicas=caracteristicas,
        target_ticker=ticker,
        y_cdf=y_cdf,
        precision_cdf=precision_cdf,
        max_dist=max_dist,
        n_neighbors=len(maestro),
        filtros=filtros,
    )

    if isinstance(neighbors_df, str):
        last_result_df = pd.DataFrame()
        return pd.DataFrame(), "Page 1 de 1"

    neighbors_df.reset_index(inplace=True)
    neighbors_df.drop(columns=["distance"], inplace=True)
    # neighbors_df = format_results(neighbors_df)
    neighbors_df = utils.format_results(neighbors_df, rename_columns)

    last_result_df = neighbors_df.head(MAX_ROWS).copy()
    return _paginate(last_result_df, page)


def search_theme(theme: str, page: int, *filtros_values) -> Tuple[pd.DataFrame, str]:
    global last_result_df
    query = theme.strip()
    if query == "":
        last_result_df = pd.DataFrame()
        return pd.DataFrame(), "Page 1 of 1"

    # Llamada al algoritmo de búsqueda, que devuelve un dataframe con k activos:
    result_df = ss.duckdb_vss_local(
        model=emb_model,
        duckdb_connection=con,
        query=query,
        k=k,
        brevity_penalty=brevity_penalty,
        reward_for_literal=reward_for_literal,
        partial_match_factor=partial_match_factor,
        table_name="vector_table",
        embedding_column="embeddings"
    )
    theme_dist = result_df[['ticker', 'distance']].rename(columns={'distance': 'Search dist.'})
    # Cruzamos el dataframe de distancias con el maestro y mantenemos las columnas originales: 
    clean_feats = [c for c in caracteristicas if c != 'ticker']
    # indexamos por ticker para cruzar las tablas:
    maestro_subset = maestro.set_index('ticker')[clean_feats]
    merged = theme_dist.set_index('ticker').join(maestro_subset, how='inner').reset_index()
    # Reordenamos las columnas y añadimos la distancia:
    ordered_cols = ['ticker'] + clean_feats + ['Search dist.']
    merged = merged[ordered_cols]
    # Ajustamos los formatos de las columnas:
    formatted = utils.format_results(merged, rename_columns)
    last_result_df = formatted.head(MAX_ROWS).copy()
    return _paginate(last_result_df, page)


def _compose_summary() -> str:
    parts = []
    if last_search_type == "theme":
        parts.append(f"Theme search for '{last_search_query}'")
    elif last_search_type == "ticker":
        parts.append(f"Ticker search for '{last_search_query}'")
    if last_column_filters:
        fstr = ", ".join(f"{col} = '{val}'" for col, val in last_column_filters)
        parts.append(f"Filters: {fstr}")
    if last_sort_col_label:
        parts.append(f"Sorted by: {last_sort_col_label} ({last_sort_dir})")
    return ". ".join(parts)

def search_all(theme: str, ticker: str, page: int) -> tuple[pd.DataFrame,str,str,str,str]:
    global last_search_type, last_search_query, last_column_filters
    last_column_filters.clear()

    if theme.strip():
        last_search_type, last_search_query = "theme", theme.strip()
        df, label = search_theme(theme, page)
        # new_ticker, new_theme = "", theme.strip()
        new_ticker, new_theme = "", "" # limpia las cajas de búsqueda

    elif ticker.strip():
        last_search_type, last_search_query = "ticker", ticker.strip().upper()
        df, label = search_dynamic(ticker, page)
        # new_ticker, new_theme = last_search_query, ""
        new_ticker, new_theme = "", ""

    else:
        df, label = _paginate(last_result_df, page)
        new_ticker, new_theme = "", ""

    summary = _compose_summary()
    return df, label, new_ticker, new_theme, summary

def page_change(theme: str, ticker: str, page: int) -> tuple[pd.DataFrame,str,str,str,str]:
    return search_all(theme, ticker, page)


# ---------------------------------------------------------------------------
# SORTING -------------------------------------------------------------------
# ---------------------------------------------------------------------------

def apply_sort(col_label: str, direction: str) -> tuple[pd.DataFrame, str, int, str]:
    global last_sort_col_label, last_sort_dir, last_search_type, last_search_query, last_column_filters, last_result_df

    # record selection and clear previous state
    last_sort_col_label, last_sort_dir = col_label or "", direction or ""
    last_search_type = last_search_query = ""
    last_column_filters.clear()

    # reload raw data
    df_raw = maestro[caracteristicas].head(MAX_ROWS).copy()

    # sort on original data column if specified
    if col_label:
        # reverse lookup original column key
        inv_map = {v: k for k, v in rename_columns.items()}
        orig_col = inv_map.get(col_label, col_label)
        asc = (direction == "Ascending")
        df_raw = df_raw.sort_values(
            by=orig_col,
            ascending=asc,
            na_position='last'
        ).reset_index(drop=True)

    # apply existing formatting helpers
    df_formatted = utils.format_results(df_raw, rename_columns)

    # update global and paginate
    last_result_df = df_formatted.copy()
    slice_df, label = _paginate(last_result_df, 1)
    summary = f"Sorted by: {col_label} ({direction})" if col_label else ""
    return slice_df, label, 1, summary



def reset_initial() -> tuple[pd.DataFrame,str,int,str,str,str]:
    global last_search_type, last_search_query, last_column_filters, last_sort_col_label, last_sort_dir, last_result_df
    last_search_type = last_search_query = ""
    last_column_filters.clear()
    last_sort_col_label = last_sort_dir = ""
    last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
    slice_df, label = _paginate(last_result_df, 1)
    default_sort = rename_columns.get("marketCap","marketCap")
    return slice_df, label, 1, "", "", default_sort, ""


# ---------------------------------------------------------------------------
# DATOS INICIALES -----------------------------------------------------------
# ---------------------------------------------------------------------------

last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
_initial_slice, _initial_label = _paginate(last_result_df, 1)

# ---------------------------------------------------------------------------
# UI ------------------------------------------------------------------------
# ---------------------------------------------------------------------------

def _load_html(name: str) -> str:
    return (ROOT / "html" / name).read_text(encoding="utf-8")

html_front_layout = _load_html("front_layout.html")

with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
    gr.HTML(html_front_layout)

    # ---------------------- TOP INPUT -------------------------------------
    with gr.Row(equal_height=True):
        theme_input = gr.Textbox(show_label=False, placeholder="Search a theme. i.e. 'lithium'", scale=2)
        ticker_input = gr.Textbox(show_label=False, placeholder="Enter a ticker symbol", scale=1)   
        buscar_button = gr.Button("Search")
        gr.HTML("<div></div>")
        reset_button = gr.Button("Reset", elem_classes="small-btn")
        # gr.HTML("<div></div>")
        random_button = gr.Button("Random ticker", elem_classes="small-btn")

    # ---------------------- SEARCH SUMMARY ------------------------
    summary_display = gr.Markdown("", elem_classes="search-spec")

    # ---------------------- DATAFRAME & PAGINATION ------------------------

    output_df = gr.Dataframe(
        value=_initial_slice,
        interactive=False,
        elem_classes="clickable-columns",
        # max_height=500
    )


    # ---------------------- PAGINATION AND SORT CONTROLS ---------------------
    with gr.Row():
        btn_prev = gr.Button("Previous", elem_classes="small-btn")
        pagination_label = gr.Markdown(_initial_label)
        btn_next = gr.Button("Next", elem_classes="small-btn")
        gr.Markdown("&nbsp;" * 20)
        # merged sort controls on right
        sort_col = gr.Dropdown(
            choices=[rename_columns.get(c, c) for c in caracteristicas],
            value=None,
            label="Reset and sort by:",
            allow_custom_value=False,
            scale=2,
        )
        sort_dir = gr.Radio(
            choices=["Ascending", "Descending"],
            value="Descending",
            label="",
            scale=1,
        )

    page_state = gr.State(1)

    # ---------------------- EXCLUSION FILTER TOGGLES --------------------------------
    # De momento excluimos esta funcionalidad, al menos en la tabla de acciones, 
    # por la complejidad que añade (es una herencia del buscador de fondos de inversión)
    # Potencial mejora para cuando incorporemos la tabla de ETFs
    '''
    with gr.Row():
        toggle_components = [
            gr.Checkbox(value=True, label=rename_columns.get(k, k)) for k in filtros_keys
        ]
    '''

    # ---------------------- HELPERS ---------------------------------------
    def reset_page():
        return 1

    def prev_page(p):
        return max(p - 1, 1)

    def next_page(p):
        return p + 1

    def search_inputs():
        return [theme_input, ticker_input, page_state]

    def random_action() -> tuple[str,int,str]:
        return utils.random_ticker(maestro), 1, ""

    # ---------------------- BINDINGS --------------------------------------
    # search_dynamic -> search_all
    inputs = [theme_input, ticker_input, page_state]

    buscar_button.click(
        search_all,
        inputs=inputs,
        outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
    )

    ticker_input.submit(
        reset_page, None, page_state
    ).then(
        search_all,
        inputs=inputs,
        outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
    )

    theme_input.submit(
        reset_page, None, page_state
    ).then(
        search_all,
        inputs=inputs,
        outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
    )

    random_button.click(
        random_action,
        None,
        [ticker_input, page_state, theme_input]
    ).then(
        search_all,
        inputs=inputs,
        outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
    )

    reset_button.click(
        reset_initial,
        None,
        [output_df, pagination_label, page_state, ticker_input, theme_input, sort_col, summary_display]
    )

    btn_prev.click(
        prev_page, page_state, page_state
    ).then(
        page_change,
        inputs=inputs,
        outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
    )

    btn_next.click(
        next_page, page_state, page_state
    ).then(
        page_change,
        inputs=inputs,
        outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
    )

    sort_col.change(
        apply_sort,
        inputs=[sort_col, sort_dir],
        outputs=[output_df, pagination_label, page_state, summary_display]
    )

    sort_dir.change(
        apply_sort,
        inputs=[sort_col, sort_dir],
        outputs=[output_df, pagination_label, page_state, summary_display]
    )

    # ---------------------- FILTERS BY COLUMN ------------------ #
    filterable_columns = [rename_columns.get(c, c) for c in cat_cols]


    def filter_by_column(evt: gr.SelectData) -> tuple[pd.DataFrame,str,int,str]:
        global last_result_df, last_column_filters
        if last_result_df.empty:
            return pd.DataFrame(), "Page 1 of 1", 1, _compose_summary()

        col = last_result_df.columns[evt.index[1]]
        # print(f"DEBUG: resolving to column #{evt.index[1]} → '{col}'")
        val = evt.value
        last_column_filters.append((col, val))
        filtered = last_result_df[last_result_df[col] == val]
        last_result_df = filtered.copy()
        slice_df, label = _paginate(last_result_df, 1)
        summary = _compose_summary()
        return slice_df, label, 1, summary


    output_df.select(
        filter_by_column,
        outputs=[output_df, pagination_label, page_state, summary_display]
    )

# ---------------------------------------------------------------------------
# LAUNCH --------------------------------------------------------------------
# ---------------------------------------------------------------------------

if __name__ == "__main__":
    front.launch()