Spaces:
Sleeping
Sleeping
File size: 3,371 Bytes
3430157 fada25c 3794682 fada25c 3794682 fada25c 3430157 fada25c 3794682 fada25c ab182a7 3794682 fada25c 3794682 fada25c 3794682 fada25c 3794682 bc16553 3794682 fada25c 3794682 fada25c 3794682 fada25c 3794682 fada25c 3794682 fada25c 3794682 fada25c 3794682 fada25c 3794682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import os
from dotenv import load_dotenv
import gradio as gr
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="google/gemma-1.1-7b-it",
tokenizer_name="google/gemma-1.1-7b-it",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
# Ensure PDF directory exists
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are a RedfernsTech chatbot whose aim is to provide better service to the user, utilizing provided context to deliver answers.
and collect the some basic inforation first also name ,email ,company name
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
return answer.response
elif isinstance(answer, dict) and 'response' in answer:
return answer['response']
else:
return "Sorry, I couldn't find an answer."
# Example usage
# Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
# Example query
query = "How do I use the RedfernsTech Q&A assistant?"
print("Query:", query)
response = handle_query(query)
print("Answer:", response)
# prompt: create a gradio chatbot for this
# Define the input and output components for the Gradio interface
input_component = gr.Textbox(
show_label=False,
placeholder="Ask me anything about the document..."
)
output_component = gr.Textbox()
# Create the Gradio interface
interface = gr.Interface(
fn=handle_query,
inputs=input_component,
outputs=output_component,
title="RedfernsTech Q&A Chatbot",
description="Ask me anything about the uploaded document."
)
# Launch the Gradio interface
interface.launch()
|