File size: 3,371 Bytes
3430157
fada25c
 
3794682
fada25c
 
 
3794682
fada25c
 
 
 
 
 
 
 
 
 
 
 
 
3430157
fada25c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3794682
fada25c
 
 
 
ab182a7
3794682
fada25c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3794682
fada25c
3794682
fada25c
3794682
bc16553
 
3794682
 
fada25c
 
 
3794682
fada25c
 
3794682
fada25c
3794682
 
 
 
 
 
 
 
 
 
 
fada25c
3794682
 
fada25c
3794682
 
fada25c
3794682
fada25c
 
3794682
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
from dotenv import load_dotenv
import gradio as gr
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="google/gemma-1.1-7b-it",
    tokenizer_name="google/gemma-1.1-7b-it",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'  # Changed to the directory containing PDFs

# Ensure PDF directory exists
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are a RedfernsTech chatbot whose aim is to provide better service to the user, utilizing provided context to deliver answers.
            and collect the some basic inforation first also name ,email ,company name
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    query_engine = index.as_query_engine(text_qa_template=text_qa_template)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        return answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        return answer['response']
    else:
        return "Sorry, I couldn't find an answer."

# Example usage

    # Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()

    # Example query
query = "How do I use the RedfernsTech Q&A assistant?"
print("Query:", query)
response = handle_query(query)
print("Answer:", response)
# prompt: create a gradio chatbot for this



# Define the input and output components for the Gradio interface
input_component = gr.Textbox(
    show_label=False,
    placeholder="Ask me anything about the document..."
)

output_component = gr.Textbox()

# Create the Gradio interface
interface = gr.Interface(
    fn=handle_query,
    inputs=input_component,
    outputs=output_component,
    title="RedfernsTech Q&A Chatbot",
    description="Ask me anything about the uploaded document."
)

# Launch the Gradio interface
interface.launch()