Spaces:
Runtime error
Runtime error
File size: 6,733 Bytes
4602937 fada25c 4615482 4602937 fada25c 4602937 162343b dd1c2fe 2b44908 fada25c 162343b fada25c a9cd3f2 fada25c 3430157 fada25c 2b44908 fada25c 2b44908 392cef8 fada25c 6dd9499 fada25c 6dd9499 b7cec6b e2df20d 62128c6 6dd9499 fada25c 6dd9499 fada25c 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c 6dd9499 fada25c 2b44908 fada25c 6dd9499 7adc402 6dd9499 7adc402 392cef8 7adc402 86b945b 7adc402 162343b 7adc402 0a5200d 7adc402 7f3fc7b 455007f 6570683 0a5200d 392cef8 162343b f2f41f0 f0d1876 e0b0a27 7f3fc7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
import firebase_admin
from firebase_admin import db, credentials
import datetime
import uuid
import random
def select_random_name():
names = ['Clara', 'Lily']
return random.choice(names)
# Example usage
# Load environment variables
load_dotenv()
# authenticate to firebase
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation
current_chat_history = []
kkk=select_random_name()
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are Lily, an expert at RedFernsTech. Respond to user queries in a concise,give answer only in bulet points, using 10-20 summary answer words per response.
Example Interaction:
'User: Hi
Lily: Hi! How can I help you today?
User: I need help with Salesforce.
Lily: What do you need help with? Integration, customization, migration, or support?
User: Customization.
Lily: We offer custom app development, tailored solutions, and admin support. What specifically are you looking for?
User: I want to simplify approvals.
Lily: Check out our Mass Approvals App. It allows one-click approval for multiple records. Learn more.
User: Do you have a currency converter?
Lily: Yes, our Currency Conversion App provides real-time conversion rates. See details.
User: What data science services do you offer?
Lily: We offer data analysis, predictive modeling, and machine learning.
User: How can I apply for a job?
Lily: Visit our Careers Page for current openings and application details.
User: Thanks!
Lily: You’re welcome! If you need anything else, just ask.'
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history
current_chat_history.append((query, response))
return response
# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
# Define the function to handle predictions
"""def predict(message,history):
response = handle_query(message)
return response"""
def predict(message, history):
logo_html = '''
<div class="circle-logo">
<img src="https://rb.gy/8r06eg" alt="FernAi">
</div>
'''
response = handle_query(message)
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
return response_with_logo
def save_chat_message(session_id, message_data):
ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data
ref.push().set(message_data)
# Define your Gradio chat interface function (replace with your actual logic)
def chat_interface(message, history):
try:
# Generate a unique session ID for this chat session
session_id = str(uuid.uuid4())
# Process the user message and generate a response (your chatbot logic)
response = handle_query(message)
# Capture the message data
message_data = {
"sender": "user",
"message": message,
"response": response,
"timestamp": datetime.datetime.now().isoformat() # Use a library like datetime
}
# Call the save function to store in Firebase with the generated session ID
save_chat_message(session_id, message_data)
# Return the bot response
return response
except Exception as e:
return str(e)
# Custom CSS for styling
css = '''
.circle-logo {
display: inline-block;
width: 40px;
height: 40px;
border-radius: 50%;
overflow: hidden;
margin-right: 10px;
vertical-align: middle;
}
.circle-logo img {
width: 100%;
height: 100%;
object-fit: cover;
}
.response-with-logo {
display: flex;
align-items: center;
margin-bottom: 10px;
}
footer {
display: none !important;
background-color: #F8D7DA;
}
label.svelte-1b6s6s {display: none}
'''
gr.ChatInterface(chat_interface,
css=css,
description="Lily",
clear_btn=None, undo_btn=None, retry_btn=None,
).launch() |