Srinivasulu kethanaboina commited on
Commit
c1c397a
·
verified ·
1 Parent(s): 7b0ee51

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -31
app.py CHANGED
@@ -5,10 +5,7 @@ from llama_index.core import StorageContext, load_index_from_storage, VectorStor
5
  from llama_index.llms.huggingface import HuggingFaceInferenceAPI
6
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
7
  from sentence_transformers import SentenceTransformer
8
- import firebase_admin
9
- from firebase_admin import db, credentials
10
  import datetime
11
- import uuid
12
  import random
13
 
14
  def select_random_name():
@@ -18,9 +15,7 @@ def select_random_name():
18
  # Example usage
19
  # Load environment variables
20
  load_dotenv()
21
- # authenticate to firebase
22
- cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
23
- firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
24
  # Configure the Llama index settings
25
  Settings.llm = HuggingFaceInferenceAPI(
26
  model_name="meta-llama/Meta-Llama-3-8B-Instruct",
@@ -44,7 +39,8 @@ os.makedirs(PERSIST_DIR, exist_ok=True)
44
 
45
  # Variable to store current chat conversation
46
  current_chat_history = []
47
- kkk=select_random_name()
 
48
  def data_ingestion_from_directory():
49
  # Use SimpleDirectoryReader on the directory containing the PDF files
50
  documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
@@ -96,10 +92,6 @@ print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
96
  data_ingestion_from_directory()
97
 
98
  # Define the function to handle predictions
99
- """def predict(message,history):
100
- response = handle_query(message)
101
- return response"""
102
-
103
  def predict(message, history):
104
  logo_html = '''
105
  <div class="circle-logo">
@@ -109,30 +101,13 @@ def predict(message, history):
109
  response = handle_query(message)
110
  response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
111
  return response_with_logo
112
- def save_chat_message(session_id, message_data):
113
- ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data
114
- ref.push().set(message_data)
115
 
116
  # Define your Gradio chat interface function (replace with your actual logic)
117
  def chat_interface(message, history):
118
  try:
119
- # Generate a unique session ID for this chat session
120
- session_id = str(uuid.uuid4())
121
-
122
  # Process the user message and generate a response (your chatbot logic)
123
  response = handle_query(message)
124
 
125
- # Capture the message data
126
- message_data = {
127
- "sender": "user",
128
- "message": message,
129
- "response": response,
130
- "timestamp": datetime.datetime.now().isoformat() # Use a library like datetime
131
- }
132
-
133
- # Call the save function to store in Firebase with the generated session ID
134
- save_chat_message(session_id, message_data)
135
-
136
  # Return the bot response
137
  return response
138
  except Exception as e:
@@ -166,12 +141,10 @@ footer {
166
  label.svelte-1b6s6s {display: none}
167
  div.svelte-rk35yg {display: none;}
168
  div.progress-text.svelte-z7cif2.meta-text {display: none;}
169
-
170
-
171
  '''
172
 
173
  gr.ChatInterface(chat_interface,
174
  css=css,
175
  description="Lily",
176
  clear_btn=None, undo_btn=None, retry_btn=None,
177
- ).launch()
 
5
  from llama_index.llms.huggingface import HuggingFaceInferenceAPI
6
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
7
  from sentence_transformers import SentenceTransformer
 
 
8
  import datetime
 
9
  import random
10
 
11
  def select_random_name():
 
15
  # Example usage
16
  # Load environment variables
17
  load_dotenv()
18
+
 
 
19
  # Configure the Llama index settings
20
  Settings.llm = HuggingFaceInferenceAPI(
21
  model_name="meta-llama/Meta-Llama-3-8B-Instruct",
 
39
 
40
  # Variable to store current chat conversation
41
  current_chat_history = []
42
+ kkk = select_random_name()
43
+
44
  def data_ingestion_from_directory():
45
  # Use SimpleDirectoryReader on the directory containing the PDF files
46
  documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
 
92
  data_ingestion_from_directory()
93
 
94
  # Define the function to handle predictions
 
 
 
 
95
  def predict(message, history):
96
  logo_html = '''
97
  <div class="circle-logo">
 
101
  response = handle_query(message)
102
  response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
103
  return response_with_logo
 
 
 
104
 
105
  # Define your Gradio chat interface function (replace with your actual logic)
106
  def chat_interface(message, history):
107
  try:
 
 
 
108
  # Process the user message and generate a response (your chatbot logic)
109
  response = handle_query(message)
110
 
 
 
 
 
 
 
 
 
 
 
 
111
  # Return the bot response
112
  return response
113
  except Exception as e:
 
141
  label.svelte-1b6s6s {display: none}
142
  div.svelte-rk35yg {display: none;}
143
  div.progress-text.svelte-z7cif2.meta-text {display: none;}
 
 
144
  '''
145
 
146
  gr.ChatInterface(chat_interface,
147
  css=css,
148
  description="Lily",
149
  clear_btn=None, undo_btn=None, retry_btn=None,
150
+ ).launch()