Spaces:
Runtime error
Runtime error
Srinivasulu kethanaboina
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from fastapi import FastAPI, Request
|
|
6 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
7 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
8 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
9 |
-
from sentence_transformers import SentenceTransformer
|
10 |
import firebase_admin
|
11 |
from firebase_admin import db, credentials
|
12 |
import datetime
|
@@ -14,17 +13,19 @@ import uuid
|
|
14 |
import threading
|
15 |
import random
|
16 |
|
|
|
17 |
def select_random_name():
|
18 |
names = ['Clara', 'Lily']
|
19 |
return random.choice(names)
|
20 |
|
21 |
-
# Example usage
|
22 |
# Load environment variables
|
23 |
load_dotenv()
|
24 |
-
|
|
|
25 |
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
|
26 |
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
|
27 |
-
|
|
|
28 |
Settings.llm = HuggingFaceInferenceAPI(
|
29 |
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
30 |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
@@ -33,13 +34,14 @@ Settings.llm = HuggingFaceInferenceAPI(
|
|
33 |
max_new_tokens=512,
|
34 |
generate_kwargs={"temperature": 0.1},
|
35 |
)
|
|
|
36 |
Settings.embed_model = HuggingFaceEmbedding(
|
37 |
model_name="BAAI/bge-small-en-v1.5"
|
38 |
)
|
39 |
|
40 |
# Define the directory for persistent storage and data
|
41 |
PERSIST_DIR = "db"
|
42 |
-
PDF_DIRECTORY = 'data'
|
43 |
|
44 |
# Ensure directories exist
|
45 |
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
@@ -60,7 +62,7 @@ def handle_query(query):
|
|
60 |
(
|
61 |
"user",
|
62 |
"""
|
63 |
-
You are the
|
64 |
{context_str}
|
65 |
Question:
|
66 |
{query_str}
|
@@ -94,28 +96,10 @@ def handle_query(query):
|
|
94 |
|
95 |
return response
|
96 |
|
97 |
-
# Example usage: Process PDF ingestion from directory
|
98 |
-
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
99 |
-
data_ingestion_from_directory()
|
100 |
-
app = FastAPI()
|
101 |
-
# Define the function to handle predictions
|
102 |
-
"""def predict(message,history):
|
103 |
-
response = handle_query(message)
|
104 |
-
return response"""
|
105 |
-
def predict(message, history):
|
106 |
-
logo_html = '''
|
107 |
-
<div class="circle-logo">
|
108 |
-
<img src="https://rb.gy/8r06eg" alt="FernAi">
|
109 |
-
</div>
|
110 |
-
'''
|
111 |
-
response = handle_query(message)
|
112 |
-
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
|
113 |
-
return response_with_logo
|
114 |
def save_chat_message(session_id, message_data):
|
115 |
ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data
|
116 |
ref.push().set(message_data)
|
117 |
|
118 |
-
# Define your Gradio chat interface function (replace with your actual logic)
|
119 |
def chat_interface(message, history):
|
120 |
try:
|
121 |
# Generate a unique session ID for this chat session
|
@@ -176,17 +160,24 @@ label.svelte-1b6s6s {display: none}
|
|
176 |
div.svelte-rk35yg {display: none;}
|
177 |
div.progress-text.svelte-z7cif2.meta-text {display: none;}
|
178 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
@app.get("/chat")
|
180 |
async def chat_ui(username: str, email: str):
|
181 |
gr.ChatInterface(
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
return {"message": "Chat interface launched."}
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
-
threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=8000), daemon=True).start()
|
|
|
6 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
7 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
8 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
9 |
import firebase_admin
|
10 |
from firebase_admin import db, credentials
|
11 |
import datetime
|
|
|
13 |
import threading
|
14 |
import random
|
15 |
|
16 |
+
# Function to select a random name
|
17 |
def select_random_name():
|
18 |
names = ['Clara', 'Lily']
|
19 |
return random.choice(names)
|
20 |
|
|
|
21 |
# Load environment variables
|
22 |
load_dotenv()
|
23 |
+
|
24 |
+
# Authenticate to Firebase
|
25 |
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
|
26 |
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
|
27 |
+
|
28 |
+
# Configure Llama index settings
|
29 |
Settings.llm = HuggingFaceInferenceAPI(
|
30 |
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
31 |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
|
|
34 |
max_new_tokens=512,
|
35 |
generate_kwargs={"temperature": 0.1},
|
36 |
)
|
37 |
+
|
38 |
Settings.embed_model = HuggingFaceEmbedding(
|
39 |
model_name="BAAI/bge-small-en-v1.5"
|
40 |
)
|
41 |
|
42 |
# Define the directory for persistent storage and data
|
43 |
PERSIST_DIR = "db"
|
44 |
+
PDF_DIRECTORY = 'data'
|
45 |
|
46 |
# Ensure directories exist
|
47 |
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
|
|
62 |
(
|
63 |
"user",
|
64 |
"""
|
65 |
+
You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give responses within 10-15 words only.
|
66 |
{context_str}
|
67 |
Question:
|
68 |
{query_str}
|
|
|
96 |
|
97 |
return response
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def save_chat_message(session_id, message_data):
|
100 |
ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data
|
101 |
ref.push().set(message_data)
|
102 |
|
|
|
103 |
def chat_interface(message, history):
|
104 |
try:
|
105 |
# Generate a unique session ID for this chat session
|
|
|
160 |
div.svelte-rk35yg {display: none;}
|
161 |
div.progress-text.svelte-z7cif2.meta-text {display: none;}
|
162 |
'''
|
163 |
+
|
164 |
+
app = FastAPI()
|
165 |
+
|
166 |
+
@app.get("/")
|
167 |
+
async def root():
|
168 |
+
return {"message": "Hello"}
|
169 |
+
|
170 |
@app.get("/chat")
|
171 |
async def chat_ui(username: str, email: str):
|
172 |
gr.ChatInterface(
|
173 |
+
fn=chat_interface,
|
174 |
+
css=css,
|
175 |
+
description="Clara",
|
176 |
+
clear_btn=None,
|
177 |
+
undo_btn=None,
|
178 |
+
retry_btn=None
|
179 |
+
).launch()
|
180 |
return {"message": "Chat interface launched."}
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
+
threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=8000), daemon=True).start()
|