import gradio as gr import os from http.cookies import SimpleCookie from dotenv import load_dotenv from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding import datetime from gradio_client import Client import requests # Load environment variables load_dotenv() # Configure the Llama index settings with updated API Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Function to save chat history to cookies def save_chat_history_to_cookies(chat_id, query, response, cookies): if cookies is None: cookies = {} history = cookies.get('chat_history', '[]') history_list = eval(history) history_list.append({ "chat_id": chat_id, "query": query, "response": response, "timestamp": str(datetime.datetime.now()) }) cookies['chat_history'] = str(history_list) def handle_query(query, cookies=None): chat_text_qa_msgs = [ ( "user", """ You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # Load index from storage storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) # Use chat history to enhance response context_str = "" if cookies: history = cookies.get('chat_history', '[]') history_list = eval(history) for entry in reversed(history_list): if entry["query"].strip(): context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, I couldn't find an answer." # Update current chat history dictionary (use unique ID as key) chat_id = str(datetime.datetime.now().timestamp()) save_chat_history_to_cookies(chat_id, query, response, cookies) return response # Define the button click function def retrieve_history_and_redirect(cookies): # Initialize the Gradio client client = Client("vilarin/Llama-3.1-8B-Instruct") # Retrieve and format chat history history = cookies.get('chat_history', '[]') history_list = eval(history) history_str = "\n".join( [f"User: {entry['query']}\nBot: {entry['response']}" for entry in history_list] ) # Prepare the message for summarization message = f""" Chat history: {history_str} """ # Call the Gradio API for summarization result = client.predict( message=message, system_prompt="Summarize the text and provide client interest in 30-40 words in bullet points.", temperature=0.8, max_new_tokens=1024, top_p=1, top_k=20, penalty=1.2, api_name="/chat" ) # Print the result for debugging print(f"Summary: {result}") # Prepare the data to be sent via POST request data = { "summary": result, "timestamp": str(datetime.datetime.now()) } # Send the result to the URL response = requests.post("https://redfernstech.com/api/receive_result", json=data) # Debugging response status print(f"POST request response: {response.status_code}, {response.text}") return response.status_code, response.text # Define your Gradio chat interface function def chat_interface(message, history): cookies = {} # You might need to get cookies from the request in a real implementation try: # Process the user message and generate a response response = handle_query(message, cookies) # Return the bot response return response except Exception as e: return str(e) # Custom CSS for styling css = ''' .circle-logo { display: inline-block; width: 40px; height: 40px; border-radius: 50%; overflow: hidden; margin-right: 10px; vertical-align: middle; } .circle-logo img { width: 100%; height: 100%; object-fit: cover; } .response-with-logo { display: flex; align-items: center; margin-bottom: 10px; } footer { display: none !important; background-color: #F8D7DA; } label.svelte-1b6s6s {display: none} div.svelte-rk35yg {display: none;} div.svelte-1rjryqp{display: none;} div.progress-text.svelte-z7cif2.meta-text {display: none;} ''' # Use Gradio Blocks to wrap components with gr.Blocks(css=css) as demo: chatbot = gr.Chatbot(placeholder="Your Personal Yes-Man
Ask Me Anything") with gr.Row(): # Align horizontally in the same line with gr.Column(scale=8): # 80% for the input and submit button submit_button = gr.ChatInterface(fn=chat_interface, chatbot=chatbot, clear_btn=None, undo_btn=None, retry_btn=None) with gr.Column(scale=2): # 20% for custom button custom_button = gr.Button("Close Chat") # Connect the button with the function, and handle the redirection custom_button.click(fn=retrieve_history_and_redirect, inputs=[gr.State()]) # Add a JavaScript function to handle redirection after the Gradio event is processed custom_button.click(fn=None, js="() => { window.open('https://redfernstech.com/chat-bot-test', '_blank'); }") # Launch the Gradio interface demo.launch()