Spaces:
Runtime error
Runtime error
from dotenv import load_dotenv | |
import gradio as gr | |
import os | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import firebase_admin | |
from firebase_admin import db, credentials | |
import datetime | |
import uuid | |
import random | |
def select_random_name(): | |
names = ['Clara', 'Lily'] | |
return random.choice(names) | |
# Load environment variables | |
load_dotenv() | |
# Authenticate to Firebase | |
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json") | |
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"}) | |
# Configure Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="facebook/rag-token-nq", | |
tokenizer_name="facebook/rag-token-nq", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define directories for storage and data | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' # Directory containing PDFs | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Variable to store current chat conversation | |
current_chat_history = [] | |
def data_ingestion_from_directory(): | |
# Use SimpleDirectoryReader on the directory containing PDF files | |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(query): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
You're Clara, working in customer care at RedfernsTech. Continue the conversation flow, giving responses within 10-15 words only. Convert all questions into company-related inquiries. Use the entire conversation context to craft responses, ensuring each answer relates to previous questions and answers. If you don't know the answer, say, 'You can directly contact us at +91 7972628566 or email us at [email protected]' | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
# Load index from storage | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
# Use chat history to enhance response | |
context_str = "" | |
for past_query, response in reversed(current_chat_history): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
# Update current chat history | |
current_chat_history.append((query, response)) | |
return response | |
def predict(message, history): | |
logo_html = ''' | |
<div class="circle-logo"> | |
<img src="https://rb.gy/8r06eg" alt="FernAi"> | |
</div> | |
''' | |
response = handle_query(message) | |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>' | |
return response_with_logo | |
def save_chat_message(session_id, message_data): | |
ref = db.reference(f'/chat_history/{session_id}') | |
ref.push().set(message_data) | |
def chat_interface(message, history): | |
try: | |
# Generate a unique session ID for this chat session | |
session_id = str(uuid.uuid4()) | |
# Process the user message and generate a response | |
response = handle_query(message) | |
# Capture the message data | |
message_data = { | |
"sender": "user", | |
"message": message, | |
"response": response, | |
"timestamp": datetime.datetime.now().isoformat() | |
} | |
# Save the chat message to Firebase | |
save_chat_message(session_id, message_data) | |
return response | |
except Exception as e: | |
return str(e) | |
# Custom CSS for styling | |
css = ''' | |
.circle-logo { | |
display: inline-block; | |
width: 40px; | |
height: 40px; | |
border-radius: 50%; | |
overflow: hidden; | |
margin-right: 10px; | |
vertical-align: middle; | |
} | |
.circle-logo img { | |
width: 100%; | |
height: 100%; | |
object-fit: cover; | |
} | |
.response-with-logo { | |
display: flex; | |
align-items: center; | |
margin-bottom: 10px; | |
} | |
footer { | |
display: none !important; | |
background-color: #F8D7DA; | |
} | |
label.svelte-1b6s6s {display: none} | |
''' | |
gr.ChatInterface( | |
chat_interface, | |
css=css, | |
description="Clara", | |
clear_btn=None, undo_btn=None, retry_btn=None | |
).launch() | |