Spaces:
Runtime error
Runtime error
Srinivasulu kethanaboina
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,23 +4,21 @@ import os
|
|
4 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
-
from sentence_transformers import SentenceTransformer
|
8 |
-
import firebase_admin
|
9 |
-
from firebase_admin import db, credentials
|
10 |
-
import datetime
|
11 |
-
import uuid
|
12 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def select_random_name():
|
15 |
names = ['Clara', 'Lily']
|
16 |
return random.choice(names)
|
17 |
|
18 |
-
# Example usage
|
19 |
# Load environment variables
|
20 |
load_dotenv()
|
21 |
-
|
22 |
-
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
|
23 |
-
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
|
24 |
# Configure the Llama index settings
|
25 |
Settings.llm = HuggingFaceInferenceAPI(
|
26 |
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
@@ -36,7 +34,7 @@ Settings.embed_model = HuggingFaceEmbedding(
|
|
36 |
|
37 |
# Define the directory for persistent storage and data
|
38 |
PERSIST_DIR = "db"
|
39 |
-
PDF_DIRECTORY = 'data' #
|
40 |
|
41 |
# Ensure directories exist
|
42 |
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
@@ -57,7 +55,7 @@ def handle_query(query):
|
|
57 |
(
|
58 |
"user",
|
59 |
"""
|
60 |
-
You are the
|
61 |
{context_str}
|
62 |
Question:
|
63 |
{query_str}
|
@@ -95,22 +93,20 @@ def handle_query(query):
|
|
95 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
96 |
data_ingestion_from_directory()
|
97 |
|
98 |
-
|
99 |
-
"""def predict(message,history):
|
100 |
-
response = handle_query(message)
|
101 |
-
return response"""
|
102 |
-
def predict(message, history):
|
103 |
logo_html = '''
|
104 |
<div class="circle-logo">
|
105 |
<img src="https://rb.gy/8r06eg" alt="FernAi">
|
106 |
</div>
|
107 |
'''
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
109 |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
|
110 |
return response_with_logo
|
111 |
-
def save_chat_message(session_id, message_data):
|
112 |
-
ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data
|
113 |
-
ref.push().set(message_data)
|
114 |
|
115 |
# Define your Gradio chat interface function (replace with your actual logic)
|
116 |
def chat_interface(message, history):
|
@@ -118,8 +114,8 @@ def chat_interface(message, history):
|
|
118 |
# Generate a unique session ID for this chat session
|
119 |
session_id = str(uuid.uuid4())
|
120 |
|
121 |
-
# Process the user message and generate a response
|
122 |
-
response =
|
123 |
|
124 |
# Capture the message data
|
125 |
message_data = {
|
@@ -129,9 +125,6 @@ def chat_interface(message, history):
|
|
129 |
"timestamp": datetime.datetime.now().isoformat() # Use a library like datetime
|
130 |
}
|
131 |
|
132 |
-
# Call the save function to store in Firebase with the generated session ID
|
133 |
-
save_chat_message(session_id, message_data)
|
134 |
-
|
135 |
# Return the bot response
|
136 |
return response
|
137 |
except Exception as e:
|
@@ -169,13 +162,14 @@ footer {
|
|
169 |
color: #111;
|
170 |
margin: 20px 0;
|
171 |
}
|
172 |
-
|
173 |
label.svelte-1b6s6s {display: none}
|
174 |
div.svelte-rk35yg {display: none;}
|
175 |
div.progress-text.svelte-z7cif2.meta-text {display: none;}
|
176 |
'''
|
|
|
|
|
177 |
gr.ChatInterface(chat_interface,
|
178 |
css=css,
|
179 |
description="Clara",
|
180 |
clear_btn=None, undo_btn=None, retry_btn=None,
|
181 |
-
).launch()
|
|
|
4 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
|
|
|
|
|
|
|
|
7 |
import random
|
8 |
+
import uuid
|
9 |
+
import datetime
|
10 |
+
from gradio_client import Client
|
11 |
+
|
12 |
+
# Initialize Gradio Client
|
13 |
+
client = Client("srinukethanaboina/SRUNU")
|
14 |
|
15 |
def select_random_name():
|
16 |
names = ['Clara', 'Lily']
|
17 |
return random.choice(names)
|
18 |
|
|
|
19 |
# Load environment variables
|
20 |
load_dotenv()
|
21 |
+
|
|
|
|
|
22 |
# Configure the Llama index settings
|
23 |
Settings.llm = HuggingFaceInferenceAPI(
|
24 |
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
|
|
34 |
|
35 |
# Define the directory for persistent storage and data
|
36 |
PERSIST_DIR = "db"
|
37 |
+
PDF_DIRECTORY = 'data' # Directory containing PDFs
|
38 |
|
39 |
# Ensure directories exist
|
40 |
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
|
|
55 |
(
|
56 |
"user",
|
57 |
"""
|
58 |
+
You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only
|
59 |
{context_str}
|
60 |
Question:
|
61 |
{query_str}
|
|
|
93 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
94 |
data_ingestion_from_directory()
|
95 |
|
96 |
+
def predict(message, history,request: gr.Request):
|
|
|
|
|
|
|
|
|
97 |
logo_html = '''
|
98 |
<div class="circle-logo">
|
99 |
<img src="https://rb.gy/8r06eg" alt="FernAi">
|
100 |
</div>
|
101 |
'''
|
102 |
+
# Use the gradio_client API to process the chat history and IP address
|
103 |
+
response = client.predict(
|
104 |
+
ip_address=str(request.client.host), # Replace with actual IP address handling if needed
|
105 |
+
chat_history=message,
|
106 |
+
api_name="/predict"
|
107 |
+
)
|
108 |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
|
109 |
return response_with_logo
|
|
|
|
|
|
|
110 |
|
111 |
# Define your Gradio chat interface function (replace with your actual logic)
|
112 |
def chat_interface(message, history):
|
|
|
114 |
# Generate a unique session ID for this chat session
|
115 |
session_id = str(uuid.uuid4())
|
116 |
|
117 |
+
# Process the user message and generate a response
|
118 |
+
response = predict(message, history)
|
119 |
|
120 |
# Capture the message data
|
121 |
message_data = {
|
|
|
125 |
"timestamp": datetime.datetime.now().isoformat() # Use a library like datetime
|
126 |
}
|
127 |
|
|
|
|
|
|
|
128 |
# Return the bot response
|
129 |
return response
|
130 |
except Exception as e:
|
|
|
162 |
color: #111;
|
163 |
margin: 20px 0;
|
164 |
}
|
|
|
165 |
label.svelte-1b6s6s {display: none}
|
166 |
div.svelte-rk35yg {display: none;}
|
167 |
div.progress-text.svelte-z7cif2.meta-text {display: none;}
|
168 |
'''
|
169 |
+
|
170 |
+
# Launch the Gradio interface
|
171 |
gr.ChatInterface(chat_interface,
|
172 |
css=css,
|
173 |
description="Clara",
|
174 |
clear_btn=None, undo_btn=None, retry_btn=None,
|
175 |
+
).launch()
|