Spaces:
Runtime error
Runtime error
Srinivasulu kethanaboina
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,19 @@
|
|
1 |
from dotenv import load_dotenv
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
-
import csv
|
5 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
6 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
-
from
|
9 |
-
|
|
|
|
|
|
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
-
|
|
|
|
|
13 |
# Configure the Llama index settings
|
14 |
Settings.llm = HuggingFaceInferenceAPI(
|
15 |
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
@@ -24,28 +28,24 @@ Settings.embed_model = HuggingFaceEmbedding(
|
|
24 |
)
|
25 |
|
26 |
# Define the directory for persistent storage and data
|
27 |
-
PERSIST_DIR = "
|
28 |
-
|
29 |
|
30 |
# Ensure directories exist
|
|
|
31 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
32 |
|
33 |
# Variable to store current chat conversation
|
34 |
-
current_chat_history =
|
35 |
-
|
36 |
|
37 |
def data_ingestion_from_directory():
|
38 |
# Use SimpleDirectoryReader on the directory containing the PDF files
|
39 |
-
PDF_DIRECTORY = 'data' # Replace with the directory containing your PDFs
|
40 |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
41 |
storage_context = StorageContext.from_defaults()
|
42 |
index = VectorStoreIndex.from_documents(documents)
|
43 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
44 |
|
45 |
-
|
46 |
def handle_query(query):
|
47 |
-
global current_chat_history
|
48 |
-
|
49 |
chat_text_qa_msgs = [
|
50 |
(
|
51 |
"user",
|
@@ -67,7 +67,7 @@ def handle_query(query):
|
|
67 |
|
68 |
# Use chat history to enhance response
|
69 |
context_str = ""
|
70 |
-
for past_query, response in reversed(current_chat_history
|
71 |
if past_query.strip():
|
72 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
73 |
|
@@ -82,40 +82,55 @@ def handle_query(query):
|
|
82 |
response = "Sorry, I couldn't find an answer."
|
83 |
|
84 |
# Update current chat history
|
85 |
-
current_chat_history
|
86 |
-
|
87 |
-
# Save chat history to CSV
|
88 |
-
with open(CSV_FILE, 'a', newline='', encoding='utf-8') as file:
|
89 |
-
csv_writer = csv.writer(file)
|
90 |
-
csv_writer.writerow([query, response])
|
91 |
|
92 |
return response
|
93 |
|
|
|
|
|
|
|
94 |
|
|
|
|
|
|
|
|
|
95 |
def predict(message, history):
|
96 |
-
# Your logo HTML code
|
97 |
logo_html = '''
|
98 |
<div class="circle-logo">
|
99 |
<img src="https://rb.gy/8r06eg" alt="FernAi">
|
100 |
</div>
|
101 |
'''
|
102 |
-
|
103 |
-
# Assuming handle_query function handles the message and returns a response
|
104 |
response = handle_query(message)
|
105 |
-
|
106 |
-
# Prepare the response with logo HTML
|
107 |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
|
108 |
-
|
109 |
-
# Convert history to a string (if it's a list)
|
110 |
-
if isinstance(history, list):
|
111 |
-
history = ' '.join(map(str, history))
|
112 |
-
|
113 |
-
# Save history to kk.txt
|
114 |
-
with open('kk.txt', 'a') as file:
|
115 |
-
file.write(history + '\n')
|
116 |
-
|
117 |
return response_with_logo
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# Custom CSS for styling
|
121 |
css = '''
|
@@ -128,13 +143,11 @@ css = '''
|
|
128 |
margin-right: 10px;
|
129 |
vertical-align: middle;
|
130 |
}
|
131 |
-
|
132 |
.circle-logo img {
|
133 |
width: 100%;
|
134 |
height: 100%;
|
135 |
object-fit: cover;
|
136 |
}
|
137 |
-
|
138 |
.response-with-logo {
|
139 |
display: flex;
|
140 |
align-items: center;
|
@@ -146,11 +159,9 @@ footer {
|
|
146 |
}
|
147 |
label.svelte-1b6s6s {display: none}
|
148 |
'''
|
149 |
-
|
150 |
-
# Launch Gradio interface
|
151 |
gr.ChatInterface(predict,
|
152 |
css=css,
|
153 |
description="FernAI",
|
154 |
clear_btn=None, undo_btn=None, retry_btn=None,
|
155 |
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
|
156 |
-
).launch(
|
|
|
1 |
from dotenv import load_dotenv
|
2 |
import gradio as gr
|
3 |
import os
|
|
|
4 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
import firebase_admin
|
9 |
+
from firebase_admin import db, credentials
|
10 |
+
import datetime
|
11 |
+
import uuid
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
14 |
+
# authenticate to firebase
|
15 |
+
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
|
16 |
+
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
|
17 |
# Configure the Llama index settings
|
18 |
Settings.llm = HuggingFaceInferenceAPI(
|
19 |
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
|
|
28 |
)
|
29 |
|
30 |
# Define the directory for persistent storage and data
|
31 |
+
PERSIST_DIR = "db"
|
32 |
+
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
|
33 |
|
34 |
# Ensure directories exist
|
35 |
+
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
36 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
37 |
|
38 |
# Variable to store current chat conversation
|
39 |
+
current_chat_history = []
|
|
|
40 |
|
41 |
def data_ingestion_from_directory():
|
42 |
# Use SimpleDirectoryReader on the directory containing the PDF files
|
|
|
43 |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
44 |
storage_context = StorageContext.from_defaults()
|
45 |
index = VectorStoreIndex.from_documents(documents)
|
46 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
47 |
|
|
|
48 |
def handle_query(query):
|
|
|
|
|
49 |
chat_text_qa_msgs = [
|
50 |
(
|
51 |
"user",
|
|
|
67 |
|
68 |
# Use chat history to enhance response
|
69 |
context_str = ""
|
70 |
+
for past_query, response in reversed(current_chat_history):
|
71 |
if past_query.strip():
|
72 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
73 |
|
|
|
82 |
response = "Sorry, I couldn't find an answer."
|
83 |
|
84 |
# Update current chat history
|
85 |
+
current_chat_history.append((query, response))
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
return response
|
88 |
|
89 |
+
# Example usage: Process PDF ingestion from directory
|
90 |
+
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
91 |
+
data_ingestion_from_directory()
|
92 |
|
93 |
+
# Define the function to handle predictions
|
94 |
+
"""def predict(message,history):
|
95 |
+
response = handle_query(message)
|
96 |
+
return response"""
|
97 |
def predict(message, history):
|
|
|
98 |
logo_html = '''
|
99 |
<div class="circle-logo">
|
100 |
<img src="https://rb.gy/8r06eg" alt="FernAi">
|
101 |
</div>
|
102 |
'''
|
|
|
|
|
103 |
response = handle_query(message)
|
|
|
|
|
104 |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
return response_with_logo
|
106 |
+
def save_chat_message(session_id, message_data):
|
107 |
+
ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data
|
108 |
+
ref.push().set(message_data)
|
109 |
+
|
110 |
+
# Define your Gradio chat interface function (replace with your actual logic)
|
111 |
+
def chat_interface(message, history):
|
112 |
+
try:
|
113 |
+
# Generate a unique session ID for this chat session
|
114 |
+
session_id = str(uuid.uuid4())
|
115 |
+
|
116 |
+
# Process the user message and generate a response (your chatbot logic)
|
117 |
+
response = handle_query(message)
|
118 |
+
|
119 |
+
# Capture the message data
|
120 |
+
message_data = {
|
121 |
+
"sender": "user",
|
122 |
+
"message": message,
|
123 |
+
"response": response,
|
124 |
+
"timestamp": datetime.datetime.now().isoformat() # Use a library like datetime
|
125 |
+
}
|
126 |
+
|
127 |
+
# Call the save function to store in Firebase with the generated session ID
|
128 |
+
save_chat_message(session_id, message_data)
|
129 |
+
|
130 |
+
# Return the bot response
|
131 |
+
return response
|
132 |
+
except Exception as e:
|
133 |
+
return str(e)
|
134 |
|
135 |
# Custom CSS for styling
|
136 |
css = '''
|
|
|
143 |
margin-right: 10px;
|
144 |
vertical-align: middle;
|
145 |
}
|
|
|
146 |
.circle-logo img {
|
147 |
width: 100%;
|
148 |
height: 100%;
|
149 |
object-fit: cover;
|
150 |
}
|
|
|
151 |
.response-with-logo {
|
152 |
display: flex;
|
153 |
align-items: center;
|
|
|
159 |
}
|
160 |
label.svelte-1b6s6s {display: none}
|
161 |
'''
|
|
|
|
|
162 |
gr.ChatInterface(predict,
|
163 |
css=css,
|
164 |
description="FernAI",
|
165 |
clear_btn=None, undo_btn=None, retry_btn=None,
|
166 |
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
|
167 |
+
).launch()
|