Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,10 +26,12 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
26 |
from fastapi.templating import Jinja2Templates
|
27 |
import json
|
28 |
from deep_translator import GoogleTranslator
|
|
|
|
|
29 |
import re
|
30 |
GOOGLE_API_KEY= os.getenv("HF_TOKEN")
|
31 |
warnings.filterwarnings("ignore")
|
32 |
-
model = ChatGoogleGenerativeAI(model="gemini-
|
33 |
temperature=0.2,convert_system_message_to_human=True,system_message="You are the Hotel voice chatbot and your name is Hotel Helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. Respond in the same language as the user's query."
|
34 |
)
|
35 |
pdf_loader = PyPDFLoader("data/ITCGrandChola.pdf")
|
@@ -37,7 +39,9 @@ pages = pdf_loader.load_and_split()
|
|
37 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
38 |
context = "\n\n".join(str(p.page_content) for p in pages)
|
39 |
texts = text_splitter.split_text(context)
|
40 |
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001",google_api_key=GOOGLE_API_KEY)
|
|
|
|
|
41 |
vector_index = Chroma.from_texts(texts, embeddings).as_retriever(search_kwargs={"k":10})
|
42 |
qa_chain = RetrievalQA.from_chain_type(
|
43 |
model,
|
|
|
26 |
from fastapi.templating import Jinja2Templates
|
27 |
import json
|
28 |
from deep_translator import GoogleTranslator
|
29 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
30 |
+
from sentence_transformers import SentenceTransformer
|
31 |
import re
|
32 |
GOOGLE_API_KEY= os.getenv("HF_TOKEN")
|
33 |
warnings.filterwarnings("ignore")
|
34 |
+
model = ChatGoogleGenerativeAI(model="gemini-2.0-flash-experimental",google_api_key=GOOGLE_API_KEY,
|
35 |
temperature=0.2,convert_system_message_to_human=True,system_message="You are the Hotel voice chatbot and your name is Hotel Helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. Respond in the same language as the user's query."
|
36 |
)
|
37 |
pdf_loader = PyPDFLoader("data/ITCGrandChola.pdf")
|
|
|
39 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
40 |
context = "\n\n".join(str(p.page_content) for p in pages)
|
41 |
texts = text_splitter.split_text(context)
|
42 |
+
#embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001",google_api_key=GOOGLE_API_KEY)
|
43 |
+
sentence_transformer_model = SentenceTransformer('BAAI/bge-small-en-v1.5')
|
44 |
+
embeddings = HuggingFaceEmbeddings(model=sentence_transformer_model)
|
45 |
vector_index = Chroma.from_texts(texts, embeddings).as_retriever(search_kwargs={"k":10})
|
46 |
qa_chain = RetrievalQA.from_chain_type(
|
47 |
model,
|