File size: 233,697 Bytes
db5f57a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "# prompt: print in csv  table\n",
        "\n",
        "import csv\n",
        "\n",
        "conn = sqlite3.connect('upwork1.db')\n",
        "cursor = conn.cursor()\n",
        "\n",
        "cursor.execute(\"SELECT * FROM jobs\")\n",
        "jobs = cursor.fetchall()\n",
        "\n",
        "with open('jobs.csv', 'w', newline='') as csvfile:\n",
        "    writer = csv.writer(csvfile)\n",
        "    writer.writerow([i[0] for i in cursor.description]) # write header\n",
        "    writer.writerows(jobs)\n",
        "\n",
        "conn.close()\n"
      ],
      "metadata": {
        "id": "othd-6xxw8Y4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def categorize_job(row):\n",
        "    title = row['title'].lower()\n",
        "    keywords = row['keywords'].lower() if 'keywords' in row else ''\n",
        "\n",
        "    # Expanded keywords for each category\n",
        "    if any(keyword in title or keyword in keywords for keyword in ['data', 'analytics', 'scientist', 'analyst','chatbot', 'machine learning', 'deep learning', 'AI', 'artificial intelligence', 'data mining', 'business intelligence', 'big data', 'genai', 'generative ai', 'nlp', 'natural language processing', 'machine learning operations', 'mlops', 'data engineering','GPT','openAi','huggingface','power BI','LLM','NLP','Web Scraping','python']):\n",
        "        return 'Data Science & Analytics'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['web', 'developer', 'programming', 'software', 'web developer', 'front-end', 'back-end', 'full-stack', 'java', 'javascript', 'php', 'react', 'angular', 'node.js', 'django', 'laravel', 'ruby on rails', 'wordpress', 'wordpress developer', 'woocommerce', 'web design', 'web developer', 'web designer']):\n",
        "        return 'Web Development'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['mobile', 'app', 'android', 'ios', 'mobile developer', 'kotlin', 'swift', 'flutter', 'react native', 'mobile app development', 'mobile app developer']):\n",
        "        return 'Mobile Development'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['project', 'manager', 'lead', 'project management', 'agile', 'scrum', 'kanban', 'waterfall', 'project coordinator']):\n",
        "        return 'Project Management'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['administrative', 'support', 'assistant', 'receptionist', 'clerical', 'virtual assistant', 'va', 'office management', 'data entry', 'customer service representative', 'csr']):\n",
        "        return 'Administrative Support'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['sales', 'business development', 'sales representative', 'account manager', 'account executive', 'lead generation', 'cold calling', 'telemarketing', 'outbound sales', 'marketing', 'marketing consultant']):\n",
        "        return 'Sales & Marketing'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['seo', 'search engine optimization', 'keyword research', 'on-page seo', 'off-page seo', 'technical seo', 'content marketing', 'sem', 'ppc', 'paid advertising', 'digital marketing', 'social media marketing']):\n",
        "        return 'Search Engine Optimization (SEO) & Digital Marketing'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['social media', 'management', 'social media manager', 'community manager', 'content creator', 'influencer marketing', 'instagram', 'facebook', 'tiktok', 'twitter', 'linkedin', 'youtube']):\n",
        "        return 'Social Media Management'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['graphic design', 'visual design', 'photoshop', 'illustrator', 'adobe creative suite', 'canva', 'design', 'designer', 'branding', 'logo design', 'ux/ui design', 'web design', 'layout design', 'print design', 'illustration', 'animation']):\n",
        "        return 'Design & Creative'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['ux', 'ui', 'user experience', 'user interface', 'ux designer', 'ui designer', 'wireframing', 'prototyping', 'interaction design']):\n",
        "        return 'UX/UI Design'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['video', 'production', 'video editor', 'filmmaking', 'after effects', 'premiere pro', 'final cut pro', 'motion graphics', 'animation', 'videographer', 'editor', 'content creator']):\n",
        "        return 'Video Production'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['writing', 'content', 'editor', 'copy editor', 'proofreader', 'copywriting', 'content writer', 'technical writing', 'scriptwriting', 'ghostwriting', 'article writing', 'blog writing', 'copywriter', 'technical writer', 'editor', 'proofreader']):\n",
        "        return 'Writing & Editing'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['translation', 'translator', 'interpreter', 'language', 'localization', 'localization specialist']):\n",
        "        return 'Translation & Localization'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['it support', 'technical support', 'help desk', 'system administrator', 'network administrator', 'it technician', 'computer science', 'cloud computing', 'aws', 'azure', 'gcp', 'devops', 'kubernetes', 'docker', 'virtualization', 'cybersecurity', 'security', 'penetration testing', 'ethical hacking', 'information security', 'data security', 'network security']):\n",
        "        return 'IT & Technology'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['network', 'engineering', 'network engineer', 'cisco', 'juniper', 'network administrator', 'it security', 'network security']):\n",
        "        return 'Network Engineering & Security'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['financial', 'consulting', 'financial analyst', 'investment banking', 'financial advisor', 'cfo', 'accounting', 'bookkeeping', 'accountant', 'tax preparation', 'tax consultant', 'tax filing', 'auditing', 'financial modeling', 'financial reporting']):\n",
        "        return 'Finance & Accounting'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['business consulting', 'management consultant', 'strategy consultant', 'business advisor', 'consultant', 'business development', 'project management', 'process improvement', 'operations management', 'business analysis']):\n",
        "        return 'Business Consulting'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['legal', 'law', 'lawyer', 'paralegal', 'contract', 'contract law', 'intellectual property', 'ip', 'trademark', 'patent', 'litigation', 'compliance', 'regulatory', 'compliance consultant', 'legal advisor', 'legal research', 'contract drafting', 'legal writing', 'paralegal', 'lawyer', 'attorney', 'legal consultant', 'legal advisor', 'legal researcher', 'legal writer', 'legal assistant', 'contract specialist', 'intellectual property lawyer', 'patent attorney', 'litigation attorney', 'corporate lawyer', 'tax lawyer']):\n",
        "        return 'Legal'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['human resources', 'hr', 'recruitment', 'recruiter', 'talent acquisition', 'onboarding', 'payroll', 'employee relations', 'compensation', 'benefits', 'hr consultant', 'payroll specialist', 'hr manager', 'recruitment manager', 'talent acquisition manager', 'hr generalist', 'hr specialist', 'payroll manager', 'compensation and benefits specialist', 'employee relations specialist', 'hr technology', 'hr analytics']):\n",
        "        return 'Human Resources'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['blockchain', 'crypto', 'cryptocurrency', 'crypto exchange', 'defi', 'nft', 'web3', 'smart contract', 'blockchain development', 'cryptocurrency exchange', 'crypto trading', 'crypto wallet', 'blockchain engineer', 'crypto engineer', 'blockchain developer', 'cryptocurrency developer', 'blockchain consultant', 'crypto consultant', 'decentralized finance', 'web3 development', 'cryptocurrency trading', 'nft art', 'blockchain security', 'crypto security']):\n",
        "        return 'Blockchain'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['sports', 'athlete', 'fitness', 'training', 'coach', 'nutrition', 'wellness', 'personal trainer', 'sports marketing', 'sports management', 'sports agency', 'sports medicine', 'athlete', 'coach', 'trainer', 'fitness', 'wellness', 'nutritionist', 'dietitian', 'sports performance', 'athletic training', 'sports science', 'sports marketing', 'sports management', 'sports agency', 'sports events']):\n",
        "        return 'Sports & Fitness'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['fashion', 'clothing', 'apparel', 'retail', 'wholesale', 'merchandising', 'style', 'fashion designer', 'fashion stylist', 'fashion marketing', 'textile', 'embroidery', 'sewing', 'tailoring', 'product design', 'fashion photography', 'fashion blogger', 'fashion influencer', 'fashion stylist', 'fashion buyer', 'fashion retailer']):\n",
        "        return 'Fashion & Apparel'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['food', 'restaurant', 'catering', 'chef', 'cook', 'bakery', 'food delivery', 'food service', 'food industry', 'culinary', 'recipe', 'food photography', 'product packaging', 'food blogger', 'food influencer', 'food stylist', 'food writer', 'restaurant management', 'food service management']):\n",
        "        return 'Food & Beverage'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['art', 'artist', 'designer', 'illustrator', 'graphic designer', 'photographer', 'animation', 'vfx', '3d modeling', '3d animation', 'digital art', 'fine art', 'art director', 'art history', 'art critique', 'art conservation', 'art restoration', 'art gallery', 'art museum', 'art collector', 'art dealer', 'artist', 'illustrator', 'designer', 'animator', 'graphic designer', 'art director', 'art curator', 'art critic', 'art teacher', 'artist', 'designer', 'illustrator', 'animator', 'graphic designer', 'art director', 'art curator', 'art critic', 'art teacher', 'fine art', 'digital art', 'photography', 'video', 'film', 'animation', '3d modeling', '3d animation', 'graphic design', 'web design', 'ux/ui design', 'art history', 'art theory', 'art criticism', 'art marketing', 'art education', 'art conservation', 'art restoration', 'art collection', 'art exhibition', 'art gallery', 'art museum', 'art fair', 'art auction', 'art therapy']):\n",
        "        return 'Art & Design'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['music', 'musician', 'composer', 'songwriter', 'producer', 'audio engineer', 'sound mixer', 'audio editing', 'music production', 'recording artist', 'audiobook narrator', 'voice over', 'voice actor', 'musician', 'instrumentalist', 'singer', 'music teacher', 'music therapy', 'music theory', 'music technology', 'sound design', 'music licensing', 'music publishing', 'music marketing', 'music producer', 'music composer', 'music editor', 'music mixer', 'music arranger', 'sound engineer', 'music industry', 'musician', 'singer', 'songwriter', 'composer', 'producer', 'DJ', 'audio engineer', 'music therapist', 'music teacher', 'music journalist', 'music production', 'music composition', 'music arrangement', 'music engineering', 'music mixing', 'music mastering', 'music scoring', 'music licensing', 'music publishing', 'music performance', 'music education', 'music therapy', 'music theory', 'music history']):\n",
        "        return 'Music'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['law', 'lawyer', 'legal', 'attorney', 'contract law', 'intellectual property', 'ip', 'trademark', 'patent', 'litigation', 'compliance', 'regulatory', 'compliance consultant', 'legal advisor', 'legal research', 'contract drafting', 'legal writing', 'paralegal', 'lawyer', 'attorney', 'legal consultant', 'legal advisor', 'legal researcher', 'legal writer', 'legal assistant', 'contract specialist', 'intellectual property lawyer', 'patent attorney', 'litigation attorney', 'corporate lawyer', 'tax lawyer']):\n",
        "        return 'Legal'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['human resources', 'hr', 'recruitment', 'recruiter', 'talent acquisition', 'onboarding', 'payroll', 'employee relations', 'compensation', 'benefits', 'hr consultant', 'payroll specialist', 'hr manager', 'recruitment manager', 'talent acquisition manager', 'hr generalist', 'hr specialist', 'payroll manager', 'compensation and benefits specialist', 'employee relations specialist', 'hr technology', 'hr analytics']):\n",
        "        return 'Human Resources'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['blockchain', 'crypto', 'cryptocurrency', 'crypto exchange', 'defi', 'nft', 'web3', 'smart contract', 'blockchain development', 'cryptocurrency exchange', 'crypto trading', 'crypto wallet', 'blockchain engineer', 'crypto engineer', 'blockchain developer', 'cryptocurrency developer', 'blockchain consultant', 'crypto consultant', 'decentralized finance', 'web3 development', 'cryptocurrency trading', 'nft art', 'blockchain security', 'crypto security', 'blockchain', 'cryptocurrency', 'crypto', 'web3', 'defi', 'nft', 'smart contracts', 'blockchain technology', 'crypto trading', 'crypto wallet', 'crypto mining', 'blockchain development', 'cryptocurrency development', 'blockchain security', 'crypto security', 'web3 development', 'decentralized finance', 'decentralized applications', 'dapps', 'non-fungible tokens', 'tokenomics', 'crypto exchanges', 'cryptocurrency exchanges', 'crypto trading', 'cryptocurrency trading', 'blockchain consulting', 'cryptocurrency consulting', 'blockchain security', 'crypto security', 'blockchain engineer', 'crypto engineer', 'blockchain developer', 'cryptocurrency developer', 'web3 developer', 'defi developer', 'nft developer']):\n",
        "        return 'Blockchain'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['construction', 'architecture', 'engineer', 'civil engineer', 'structural engineer', 'mechanical engineer', 'architect', 'drafting', 'cad', 'autocad', 'revit', 'sketchUp', '3d modeling', '3d rendering', 'building information modeling', 'bim', 'project management', 'construction management', 'renovation', 'remodel', 'home improvement', 'landscape design', 'landscaping', 'building', 'engineering', 'construction technology', 'building design', 'construction design', 'architecture design', 'interior design', 'landscape architecture', 'structural analysis', 'construction estimating', 'construction bidding', 'construction project management', 'construction', 'architecture', 'engineering', 'civil engineering', 'structural engineering', 'mechanical engineering', 'architectural design', 'interior design', 'landscape design', 'construction management', 'project management', 'construction technology', 'building information modeling', 'bim', 'cad', 'autocad', 'revit', 'sketchUp', '3d modeling', '3d rendering', 'construction estimating', 'construction bidding', 'construction materials', 'construction equipment', 'construction safety', 'construction law', 'construction economics', 'construction project management', 'construction engineer', 'architectural engineer', 'civil engineer', 'structural engineer', 'mechanical engineer', 'interior designer', 'landscape architect', 'construction manager', 'project manager', 'construction estimator', 'construction superintendent']):\n",
        "        return 'Construction'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['finance', 'accounting', 'bookkeeping', 'financial analyst', 'financial advisor', 'tax', 'tax preparation', 'cpa', 'auditor', 'financial modeling', 'investment', 'investor', 'venture capital', 'private equity', 'wealth management', 'financial planning', 'financial consultant', 'accountant', 'bookkeeper', 'tax accountant', 'tax preparer', 'financial advisor', 'financial planner', 'investment banker', 'investment advisor', 'financial manager', 'financial analyst', 'financial reporting', 'financial modeling', 'accounting software', 'bookkeeping software', 'tax software', 'financial analysis tools', 'financial modeling tools', 'investment banking', 'investment management', 'wealth management']):\n",
        "        return 'Finance'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['travel', 'tourism', 'travel agent', 'tour operator', 'hospitality', 'hotel', 'restaurant', 'event planning', 'concierge', 'travel consultant', 'adventure travel', 'luxury travel', 'cruise', 'airline', 'tourism marketing', 'hospitality management', 'event management', 'tourism', 'travel', 'travel agent', 'tour operator', 'travel agency', 'travel consultant', 'travel planner', 'travel blogger', 'travel influencer', 'hotel management', 'hospitality industry', 'tourism industry', 'event management', 'travel technology', 'travel marketing', 'travel booking', 'travel insurance', 'tourism', 'travel', 'travel agency', 'travel agent', 'tour operator', 'travel blogger', 'travel influencer', 'travel writer', 'travel photographer', 'travel consultant', 'travel planner', 'travel advisor', 'travel marketing', 'travel management', 'travel technology', 'hospitality', 'hotel', 'restaurant', 'event planning', 'concierge', 'hospitality management', 'hotel management', 'restaurant management', 'event planning', 'event management', 'hospitality industry', 'tourism industry']):\n",
        "        return 'Travel'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['logistics', 'supply chain', 'supply chain management', 'logistics management', 'procurement', 'purchasing', 'shipping', 'warehousing', 'distribution', 'inventory management', 'transportation', 'freight', 'supply chain consultant', 'logistics consultant', 'procurement specialist', 'purchasing manager', 'logistics manager', 'supply chain analyst', 'supply chain engineer', 'logistics engineer', 'freight forwarder', '3pl', '4pl', 'logistics', 'supply chain', 'supply chain management', 'logistics management', 'procurement', 'purchasing', 'shipping', 'warehousing', 'distribution', 'inventory management', 'transportation', 'freight', 'supply chain consultant', 'logistics consultant', 'procurement specialist', 'purchasing manager', 'logistics manager', 'supply chain analyst', 'supply chain engineer', 'logistics engineer', 'freight forwarder', '3pl', '4pl']):\n",
        "        return 'Logistics'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['customer service', 'support', 'customer support representative', 'call center', 'help desk', 'client services', 'account management', 'client management', 'customer success', 'customer experience', 'user experience', 'ux', 'customer service', 'customer support', 'customer experience', 'client services', 'account management', 'customer success manager', 'customer service representative', 'call center agent', 'help desk agent', 'technical support', 'customer support specialist']):\n",
        "        return 'Customer Service'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['healthcare', 'medical', 'hospital', 'clinic', 'doctor', 'nurse', 'physician', 'therapist', 'pharmacist', 'dentist', 'mental health', 'psychology', 'psychiatry', 'biotechnology', 'bioinformatics', 'pharmaceutical', 'biomedical', 'healthcare consultant', 'healthcare marketing', 'healthcare technology', 'medical billing', 'medical coding', 'healthcare administration', 'health insurance', 'health and wellness', 'medical', 'healthcare', 'doctor', 'nurse', 'physician', 'physician assistant', 'nurse practitioner', 'pharmacist', 'dentist', 'therapist', 'psychologist', 'psychiatrist', 'medical coder', 'medical biller', 'healthcare administrator', 'healthcare manager', 'healthcare marketing', 'healthcare technology', 'medical research', 'clinical research', 'biotechnology', 'biomedical engineering', 'pharmaceutical industry', 'healthcare industry']):\n",
        "        return 'Healthcare'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['education', 'teaching', 'tutor', 'instructor', 'professor', 'curriculum', 'learning management system', 'lms', 'e-learning', 'online learning', 'training', 'course development', 'educational content', 'educational technology', 'edtech', 'student', 'teacher', 'tutor', 'instructor', 'professor', 'school', 'college', 'university', 'education consultant', 'educational researcher', 'learning and development', 'teacher', 'instructor', 'professor', 'tutor', 'educational consultant', 'curriculum developer', 'learning and development specialist', 'instructional designer', 'online learning platform', 'educational technology specialist', 'e-learning platform', 'education researcher', 'education writer', 'education marketer', 'online learning', 'education', 'teaching', 'teacher', 'tutor', 'instructor', 'professor', 'curriculum', 'curriculum development', 'instructional design', 'learning management system', 'lms', 'e-learning', 'online course', 'course creator', 'educational technology', 'edtech', 'educational content', 'education consultant', 'educational researcher', 'education writer', 'education marketer', 'educational materials', 'educational resources', 'training', 'training development', 'training delivery', 'training evaluation']):\n",
        "        return 'Education'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['marketing', 'digital marketing', 'social media marketing', 'content marketing', 'email marketing', 'seo', 'sem', 'ppc', 'paid advertising', 'marketing automation', 'crm', 'marketing strategy', 'marketing analyst', 'marketing consultant', 'marketing manager', 'brand manager', 'marketing agency', 'advertising', 'advertising agency', 'media buying', 'public relations', 'pr', 'content creation', 'influencer marketing', 'social media management', 'marketing specialist', 'marketing manager', 'digital marketing manager', 'marketing consultant', 'marketing agency', 'marketing research', 'marketing analytics', 'marketing automation', 'marketing strategy', 'marketing communications', 'brand management', 'digital advertising', 'social media marketing', 'content marketing', 'email marketing', 'seo', 'sem', 'ppc', 'paid advertising', 'affiliate marketing', 'influencer marketing', 'social media management', 'marketing automation', 'crm', 'marketing analytics', 'marketing strategy', 'marketing communications', 'brand management', 'digital advertising', 'social media marketing', 'content marketing', 'email marketing', 'seo', 'sem', 'ppc', 'paid advertising', 'affiliate marketing', 'influencer marketing', 'social media management', 'marketing automation', 'crm', 'marketing analytics', 'marketing strategy', 'marketing communications', 'brand management', 'digital advertising', 'social media marketing', 'content marketing', 'email marketing', 'seo', 'sem', 'ppc', 'paid advertising', 'affiliate marketing', 'influencer marketing', 'social media management', 'marketing automation', 'crm', 'marketing analytics', 'marketing strategy', 'marketing communications', 'brand management']):\n",
        "        return 'Marketing'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['nonprofit', 'charity', 'ngo', 'fundraising', 'grant writing', 'philanthropy', 'social impact', 'non-profit organization', 'non-profit management', 'non-profit consultant', 'non-profit marketing', 'charity', 'foundation', 'non-governmental organization', 'non-profit', 'philanthropy', 'fundraising', 'grant writing', 'non-profit development', 'non-profit management', 'non-profit marketing', 'non-profit research', 'non-profit communications', 'non-profit technology']):\n",
        "        return 'Nonprofit'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['law', 'lawyer', 'legal', 'attorney', 'contract law', 'intellectual property', 'ip', 'trademark', 'patent', 'litigation', 'compliance', 'regulatory', 'compliance consultant', 'legal advisor', 'legal research', 'contract drafting', 'legal writing', 'paralegal', 'lawyer', 'attorney', 'legal consultant', 'legal advisor', 'legal researcher', 'legal writer', 'legal assistant', 'contract specialist', 'intellectual property lawyer', 'patent attorney', 'litigation attorney', 'corporate lawyer', 'tax lawyer']):\n",
        "        return 'Legal'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['human resources', 'hr', 'recruitment', 'recruiter', 'talent acquisition', 'onboarding', 'payroll', 'employee relations', 'compensation', 'benefits', 'hr consultant', 'payroll specialist', 'hr manager', 'recruitment manager', 'talent acquisition manager', 'hr generalist', 'hr specialist', 'payroll manager', 'compensation and benefits specialist', 'employee relations specialist', 'hr technology', 'hr analytics']):\n",
        "        return 'Human Resources'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['blockchain', 'crypto', 'cryptocurrency', 'crypto exchange', 'defi', 'nft', 'web3', 'smart contract', 'blockchain development', 'cryptocurrency exchange', 'crypto trading', 'crypto wallet', 'blockchain engineer', 'crypto engineer', 'blockchain developer', 'cryptocurrency developer', 'blockchain consultant', 'crypto consultant', 'decentralized finance', 'web3 development', 'cryptocurrency trading', 'nft art', 'blockchain security', 'crypto security', 'blockchain', 'cryptocurrency', 'crypto', 'web3', 'defi', 'nft', 'smart contracts', 'blockchain technology', 'crypto trading', 'crypto wallet', 'crypto mining', 'blockchain development', 'cryptocurrency development', 'blockchain security', 'crypto security', 'web3 development', 'decentralized finance', 'decentralized applications', 'dapps', 'non-fungible tokens', 'tokenomics', 'crypto exchanges', 'cryptocurrency exchanges', 'crypto trading', 'cryptocurrency trading', 'blockchain consulting', 'cryptocurrency consulting', 'blockchain security', 'crypto security', 'blockchain engineer', 'crypto engineer', 'blockchain developer', 'cryptocurrency developer', 'web3 developer', 'defi developer', 'nft developer']):\n",
        "        return 'Blockchain'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['construction', 'architecture', 'engineer', 'civil engineer', 'structural engineer', 'mechanical engineer', 'architect', 'drafting', 'cad', 'autocad', 'revit', 'sketchUp', '3d modeling', '3d rendering', 'building information modeling', 'bim', 'project management', 'construction management', 'renovation', 'remodel', 'home improvement', 'landscape design', 'landscaping', 'building', 'engineering', 'construction technology', 'building design', 'construction design', 'architecture design', 'interior design', 'landscape architecture', 'structural analysis', 'construction estimating', 'construction bidding', 'construction project management', 'construction', 'architecture', 'engineering', 'civil engineering', 'structural engineering', 'mechanical engineering', 'architectural design', 'interior design', 'landscape design', 'construction management', 'project management', 'construction technology', 'building information modeling', 'bim', 'cad', 'autocad', 'revit', 'sketchUp', '3d modeling', '3d rendering', 'construction estimating', 'construction bidding', 'construction materials', 'construction equipment', 'construction safety', 'construction law', 'construction economics', 'construction project management', 'construction engineer', 'architectural engineer', 'civil engineer', 'structural engineer', 'mechanical engineer', 'interior designer', 'landscape architect', 'construction manager', 'project manager', 'construction estimator', 'construction superintendent']):\n",
        "        return 'Construction'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['finance', 'accounting', 'bookkeeping', 'financial analyst', 'financial advisor', 'tax', 'tax preparation', 'cpa', 'auditor', 'financial modeling', 'investment', 'investor', 'venture capital', 'private equity', 'wealth management', 'financial planning', 'financial consultant', 'accountant', 'bookkeeper', 'tax accountant', 'tax preparer', 'financial advisor', 'financial planner', 'investment banker', 'investment advisor', 'financial manager', 'financial analyst', 'financial reporting', 'financial modeling', 'accounting software', 'bookkeeping software', 'tax software', 'financial analysis tools', 'financial modeling tools', 'investment banking', 'investment management', 'wealth management']):\n",
        "        return 'Finance'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['travel', 'tourism', 'travel agent', 'tour operator', 'hospitality', 'hotel', 'restaurant', 'event planning', 'concierge', 'travel consultant', 'adventure travel', 'luxury travel', 'cruise', 'airline', 'tourism marketing', 'hospitality management', 'event management', 'tourism', 'travel', 'travel agency', 'travel agent', 'tour operator', 'travel blogger', 'travel influencer', 'travel writer', 'travel photographer', 'travel consultant', 'travel planner', 'travel advisor', 'travel marketing', 'travel management', 'travel technology', 'hospitality', 'hotel', 'restaurant', 'event planning', 'concierge', 'hospitality management', 'hotel management', 'restaurant management', 'event planning', 'event management', 'hospitality industry', 'tourism industry']):\n",
        "        return 'Travel'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['logistics', 'supply chain', 'supply chain management', 'logistics management', 'procurement', 'purchasing', 'shipping', 'warehousing', 'distribution', 'inventory management', 'transportation', 'freight', 'supply chain consultant', 'logistics consultant', 'procurement specialist', 'purchasing manager', 'logistics manager', 'supply chain analyst', 'supply chain engineer', 'logistics engineer', 'freight forwarder', '3pl', '4pl', 'logistics', 'supply chain', 'supply chain management', 'logistics management', 'procurement', 'purchasing', 'shipping', 'warehousing', 'distribution', 'inventory management', 'transportation', 'freight', 'supply chain consultant', 'logistics consultant', 'procurement specialist', 'purchasing manager', 'logistics manager', 'supply chain analyst', 'supply chain engineer', 'logistics engineer', 'freight forwarder', '3pl', '4pl']):\n",
        "        return 'Logistics'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['customer service', 'support', 'customer support representative', 'call center', 'help desk', 'client services', 'account management', 'client management', 'customer success', 'customer experience', 'user experience', 'ux', 'customer service', 'customer support', 'customer experience', 'client services', 'account management', 'customer success manager', 'customer service representative', 'call center agent', 'help desk agent', 'technical support', 'customer support specialist']):\n",
        "        return 'Customer Service'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['healthcare', 'medical', 'hospital', 'clinic', 'doctor', 'nurse', 'physician', 'therapist', 'pharmacist', 'dentist', 'mental health', 'psychology', 'psychiatry', 'biotechnology', 'bioinformatics', 'pharmaceutical', 'biomedical', 'healthcare consultant', 'healthcare marketing', 'healthcare technology', 'medical billing', 'medical coding', 'healthcare administration', 'health insurance', 'health and wellness', 'medical', 'healthcare', 'doctor', 'nurse', 'physician', 'physician assistant', 'nurse practitioner', 'pharmacist', 'dentist', 'therapist', 'psychologist', 'psychiatrist', 'medical coder', 'medical biller', 'healthcare administrator', 'healthcare manager', 'healthcare marketing', 'healthcare technology', 'medical research', 'clinical research', 'biotechnology', 'biomedical engineering', 'pharmaceutical industry', 'healthcare industry']):\n",
        "        return 'Healthcare'\n",
        "    elif any(keyword in title or keyword in keywords for keyword in ['education', 'teaching', 'tutor', 'instructor', 'professor', 'curriculum', 'learning management system', 'lms', 'e-learning', 'online learning', 'training', 'course development', 'educational content', 'educational technology', 'edtech', 'student', 'teacher', 'tutor', 'instructor', 'professor', 'school', 'college', 'university', 'education consultant', 'educational researcher', 'learning and development', 'teacher', 'instructor', 'professor', 'tutor', 'educational consultant', 'curriculum developer', 'learning and development specialist', 'instructional designer', 'online learning platform', 'educational technology specialist', 'e-learning platform', 'education researcher', 'education writer', 'education marketer', 'online learning', 'education', 'teaching', 'teacher', 'tutor', 'instructor', 'professor', 'curriculum', 'curriculum development', 'instructional design', 'learning management system', 'lms', 'e-learning', 'online course', 'course creator', 'educational technology', 'edtech', 'educational content', 'education consultant', 'educational researcher', 'education writer', 'education marketer', 'educational materials', 'educational resources', 'training', 'training development', 'training delivery', 'training evaluation', 'teacher', 'instructor', 'professor', 'tutor', 'education', 'educational', 'teaching', 'learning', 'curriculum', 'instructional design', 'online learning', 'e-learning', 'learning management system', 'lms', 'course', 'course development', 'training', 'education technology', 'edtech', 'student', 'classroom', 'school', 'university', 'college', 'education consultant', 'educational researcher', 'educational materials', 'educational resources', 'teaching materials', 'learning resources', 'training materials']):\n",
        "        return 'Education'\n",
        "    else:\n",
        "        return 'Other'"
      ],
      "metadata": {
        "id": "4mibVTC67iEt"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import pandas as pd\n",
        "\n",
        "# Load the jobs CSV file\n",
        "jobs_df = pd.read_csv('jobs.csv')\n",
        "# Apply the categorization function to each row\n",
        "jobs_df['category'] = jobs_df.apply(categorize_job, axis=1)\n",
        "\n",
        "# Save the updated DataFrame to a new CSV file\n",
        "jobs_df.to_csv('updated_jobs.csv', index=False)\n",
        "\n",
        "print(\"New category column added and saved to updated_jobs.csv\")\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "LW5O_NNRxFkC",
        "outputId": "b1b25f22-ab15-48f1-e399-bfc55e2ea43b"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "New category column added and saved to updated_jobs.csv\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# prompt: plot this '\n",
        "\n",
        "import pandas as pd\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# Load the updated jobs data\n",
        "jobs_df = pd.read_csv('updated_jobs.csv')\n",
        "\n",
        "# Count the occurrences of each category\n",
        "category_counts = jobs_df['category'].value_counts()\n",
        "\n",
        "# Create a bar plot\n",
        "plt.figure(figsize=(12, 6))  # Adjust figure size for better readability\n",
        "plt.bar(category_counts.index, category_counts.values)\n",
        "plt.xlabel(\"Job Category\")\n",
        "plt.ylabel(\"Number of Jobs\")\n",
        "plt.title(\"Distribution of Jobs Across Categories\")\n",
        "plt.xticks(rotation=45, ha=\"right\")  # Rotate x-axis labels for better visibility\n",
        "plt.tight_layout()  # Adjust layout to prevent labels from overlapping\n",
        "plt.show()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 442
        },
        "id": "gICBDNg8zpKb",
        "outputId": "18802005-ba98-44e2-f8d9-79389bdf502f"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 1200x600 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU5/c28LOKgA0QpIiiIGIBVFTsXbGBvRt7jbEiiIot9t6NNRrs0diNGrvGhr2XWGIv2BVEAWHv9w/end8uYMLC7urX3J/r8kqYnZ3zzOzUM09RAYAQERERERERERGZUIYvXQAiIiIiIiIiIvrvYVKKiIiIiIiIiIhMjkkpIiIiIiIiIiIyOSaliIiIiIiIiIjI5JiUIiIiIiIiIiIik2NSioiIiIiIiIiITI5JKSIiIiIiIiIiMjkmpYiIiIiIiIiIyOSYlCIiIiIiIiIiIpNjUoqIiOgLGTVqlKhUKpPEqlatmlSrVk35+9ChQ6JSqWTDhg0mid+pUydxdXU1Say0ev/+vXTr1k2cnJxEpVJJYGCgUeKoVCrp06ePUZZN/12urq7SqVOnL10MIiIivTApRUREZADLli0TlUql/LO0tBRnZ2epU6eOzJkzR6KiogwS58mTJzJq1Ci5cOGCQZZnSF9z2VJjwoQJsmzZMvnhhx9k5cqV0r59+8/O6+rqKvXr1zdh6dJm/vz5olKppGzZsl+6KEa3efNmqVevnuTMmVPMzc3F2dlZWrZsKQcOHNB7Wf/r+zIREdH/CrMvXQAiIqJvyZgxY8TNzU0+ffokERERcujQIQkMDJQZM2bItm3bpFixYsq8w4cPlyFDhui1/CdPnsjo0aPF1dVVfHx8Uv29PXv26BUnLf6pbD///LOo1WqjlyE9Dhw4IOXKlZMff/zxSxfFYFavXi2urq5y6tQpuX37thQoUOBLF8ngAEiXLl1k2bJlUqJECQkKChInJyd5+vSpbN68WWrWrCnHjh2TChUqpHqZaT3OvqQbN25Ihgx830xERP9bmJQiIiIyoHr16omvr6/yd2hoqBw4cEDq168vDRs2lOvXr0vmzJlFRMTMzEzMzIx7Kf7w4YNkyZJFzM3NjRrn32TKlOmLxk+N58+fi6en55cuhsHcvXtXjh8/Lps2bZLvv/9eVq9ebbCEW0xMjJibm38VSZDp06fLsmXLlOSvdpPYYcOGycqVK41+nH0pACQmJkYyZ84sFhYWX7o4REREevvydxJERETfuBo1asiIESPk/v37smrVKmV6Sn1K7d27VypVqiQ2NjaSLVs2KVSokAwdOlREEvuBKl26tIiIdO7cWWkquGzZMhFJ7DfK29tbzp49K1WqVJEsWbIo303ap5RGQkKCDB06VJycnCRr1qzSsGFDefjwoc48n+urRnuZ/1a2lPqUio6OluDgYHFxcRELCwspVKiQTJs2TQDozKfpg2nLli3i7e0tFhYW4uXlJbt27Up5gyfx/Plz6dq1qzg6OoqlpaUUL15cli9frnyu6V/r7t27smPHDqXs9+7dS9Xy9V0fjdWrV0uhQoXE0tJSSpUqJYcPH9b5PCoqSgIDA8XV1VUsLCzEwcFBatWqJefOnUtVeVavXi05cuSQgIAAad68uaxevTrF+d6+fSsDBgxQ4uTJk0c6dOggL1++FJH/2z5r166V4cOHS+7cuSVLliwSGRkpIiLr16+XUqVKSebMmSVnzpzSrl07efz4sU6MiIgI6dy5s+TJk0csLCwkV65c0qhRI51tfObMGalTp47kzJlTMmfOLG5ubtKlS5d/XMePHz/KxIkTpXDhwjJt2rQU+2hr3769lClTRkREXr9+LQMHDpSiRYtKtmzZxMrKSurVqycXL15U5v+3fVlE5OTJk1K3bl2xtraWLFmySNWqVeXYsWPJYh86dEh8fX3F0tJS3N3dZdGiRSke9/Hx8TJ27Fhxd3cXCwsLcXV1laFDh0psbKzOfJpmo7t37xZfX1/JnDmzLFq0SPks6XH69u1bCQwMVPbJAgUKyOTJk5PVWly7dq2UKlVKsmfPLlZWVlK0aFGZPXv2P257IiIiQ/g2XxsRERF9Zdq3by9Dhw6VPXv2SPfu3VOc5+rVq1K/fn0pVqyYjBkzRiwsLOT27dvKw26RIkVkzJgxMnLkSOnRo4dUrlxZRESnWdKrV6+kXr160rp1a2nXrp04Ojr+Y7nGjx8vKpVKBg8eLM+fP5dZs2aJn5+fXLhwQanRlRqpKZs2ANKwYUM5ePCgdO3aVXx8fGT37t0SEhIijx8/lpkzZ+rMf/ToUdm0aZP06tVLsmfPLnPmzJFmzZrJgwcPxM7O7rPl+vjxo1SrVk1u374tffr0ETc3N1m/fr106tRJ3r59K/3795ciRYrIypUrZcCAAZInTx4JDg4WERF7e/tUr7++6/Pnn3/KunXrpF+/fmJhYSHz58+XunXryqlTp8Tb21tERHr27CkbNmyQPn36iKenp7x69UqOHj0q169fl5IlS/5rmVavXi1NmzYVc3NzadOmjSxYsEBOnz6tJFxEEjt3r1y5sly/fl26dOkiJUuWlJcvX8q2bdvk0aNHkjNnTmXesWPHirm5uQwcOFBiY2PF3Nxcli1bJp07d5bSpUvLxIkT5dmzZzJ79mw5duyYnD9/XmxsbEREpFmzZnL16lXp27evuLq6yvPnz2Xv3r3y4MED5e/atWuLvb29DBkyRGxsbOTevXuyadOmf1zHo0ePyuvXryUwMFAyZsz4r9vkzp07smXLFmnRooW4ubnJs2fPZNGiRVK1alW5du2aODs7/+u+fODAAalXr56UKlVKfvzxR8mQIYOEhYVJjRo15MiRI0oC7Pz581K3bl3JlSuXjB49WhISEmTMmDEp7lfdunWT5cuXS/PmzSU4OFhOnjwpEydOlOvXr8vmzZt15r1x44a0adNGvv/+e+nevbsUKlQoxXX98OGDVK1aVR4/fizff/+95M2bV44fPy6hoaHy9OlTmTVrlogkJsLbtGkjNWvWlMmTJ4uIyPXr1+XYsWPSv3//f92mRERE6QIiIiJKt7CwMIgITp8+/dl5rK2tUaJECeXvH3/8EdqX4pkzZ0JE8OLFi88u4/Tp0xARhIWFJfusatWqEBEsXLgwxc+qVq2q/H3w4EGICHLnzo3IyEhl+m+//QYRwezZs5Vp+fLlQ8eOHf91mf9Uto4dOyJfvnzK31u2bIGIYNy4cTrzNW/eHCqVCrdv31amiQjMzc11pl28eBEigrlz5yaLpW3WrFkQEaxatUqZFhcXh/LlyyNbtmw6654vXz4EBAT84/I+N6++6yMiOHPmjDLt/v37sLS0RJMmTZRp1tbW6N27d6rKk9SZM2cgIti7dy8AQK1WI0+ePOjfv7/OfCNHjoSIYNOmTcmWoVarAfzfvpI/f358+PBB+TwuLg4ODg7w9vbGx48flenbt2+HiGDkyJEAgDdv3kBEMHXq1M+Wd/Pmzf96/KRk9uzZEBFs3rw5VfPHxMQgISFBZ9rdu3dhYWGBMWPGKNM+ty+r1Wp4eHigTp06yvYBgA8fPsDNzQ21atVSpjVo0ABZsmTB48ePlWm3bt2CmZmZznF/4cIFiAi6deumE2vgwIEQERw4cECZli9fPogIdu3alWzdkh6nY8eORdasWXHz5k2d+YYMGYKMGTPiwYMHAID+/fvDysoK8fHxyZZJRERkbGy+R0REZCLZsmX7x1H4NLVKtm7dmuZOwS0sLKRz586pnr9Dhw6SPXt25e/mzZtLrly5ZOfOnWmKn1o7d+6UjBkzSr9+/XSmBwcHCwD5448/dKb7+fmJu7u78nexYsXEyspK7ty5869xnJycpE2bNsq0TJkySb9+/eT9+/fy559/GmBt9F+f8uXLS6lSpZS/8+bNK40aNZLdu3dLQkKCiCTuDydPnpQnT57oXZ7Vq1eLo6OjVK9eXUQSm0C2atVK1q5dqyxfRGTjxo1SvHhxadKkSbJlJG1i1rFjR53ac2fOnJHnz59Lr169xNLSUpkeEBAghQsXlh07doiISObMmcXc3FwOHTokb968SbG8mn1/+/bt8unTp1Svp6YJofY+/E8sLCyUfrASEhLk1atXSjPZ1DSLvHDhgty6dUu+++47efXqlbx8+VJevnwp0dHRUrNmTTl8+LCo1WpJSEiQffv2SePGjcXZ2Vn5foECBaRevXo6y9Qca0FBQTrTNTX2NNtRw83NTerUqfOvZV2/fr1UrlxZcuTIoZTz5cuX4ufnJwkJCUpzURsbG4mOjpa9e/f+6zKJiIgMjUkpIiIiE3n//v0/Pjy3atVKKlasKN26dRNHR0dp3bq1/Pbbb3olqHLnzq1Xp+YeHh46f6tUKilQoIDe/Snp6/79++Ls7JxsexQpUkT5XFvevHmTLSNHjhyfTXJox/Hw8EjWIffn4qSVvuuTdLuLiBQsWFA+fPggL168EBGRKVOmyJUrV8TFxUXKlCkjo0aN+tcknEhismXt2rVSvXp1uXv3rty+fVtu374tZcuWlWfPnsn+/fuVef/++2+lueC/cXNzS7bOIpJi87HChQsrn1tYWMjkyZPljz/+EEdHR6lSpYpMmTJFIiIilPmrVq0qzZo1k9GjR0vOnDmlUaNGEhYWlqxPpaSsrKxERP4x2atNrVbLzJkzxcPDQywsLCRnzpxib28vly5dknfv3v3r92/duiUiiQk6e3t7nX9LliyR2NhYeffunTx//lw+fvyY4miHSafdv39fMmTIkGy6k5OT2NjYJNt3kv4O/1TWXbt2JSunn5+fiCT2tSYi0qtXLylYsKDUq1dP8uTJI126dEl1f21ERETpxaQUERGRCTx69EjevXuX4kOqRubMmeXw4cOyb98+ad++vVy6dElatWoltWrV0qnd8k/06QcqtVLqPFpEUl0mQ/hcf0H4TCfi34KWLVvKnTt3ZO7cueLs7CxTp04VLy+vZLWukjpw4IA8ffpU1q5dKx4eHsq/li1bioh8tsPzf5OefSswMFBu3rwpEydOFEtLSxkxYoQUKVJEzp8/LyKJ+9iGDRskPDxc+vTpI48fP5YuXbpIqVKl5P37959dbuHChUVE5PLly6kqx4QJEyQoKEiqVKkiq1atkt27d8vevXvFy8srVclfzTxTp06VvXv3pvgvW7ZsqSpLUp87zpJK7e+gVqulVq1any1ns2bNRETEwcFBLly4INu2bVP6RatXr5507NgxTetBRESkD3Z0TkREZAIrV64UEfnXZjcZMmSQmjVrSs2aNWXGjBkyYcIEGTZsmBw8eFD8/PxS/eCaWpqaHxoA5Pbt21KsWDFlWo4cOeTt27fJvnv//n3Jnz+/8rc+ZcuXL5/s27dPoqKidGoX/fXXX8rnhpAvXz65dOmSqNVqndpSxoijz/ok3e4iIjdv3pQsWbLodISdK1cu6dWrl/Tq1UueP38uJUuWlPHjxydrAqZt9erV4uDgIPPmzUv22aZNm2Tz5s2ycOFCyZw5s7i7u8uVK1f0Xl/tdbpx44bUqFFD57MbN24kW2d3d3cJDg6W4OBguXXrlvj4+Mj06dN1RqQsV66clCtXTsaPHy9r1qyRtm3bytq1a6Vbt24plqFSpUqSI0cO+fXXX2Xo0KH/2tn5hg0bpHr16rJ06VKd6W/fvtXp1P1z+7KmCamVlZVS4yglDg4OYmlpKbdv3072WdJp+fLlE7VaLbdu3VJq1omIPHv2TN6+fZvmfdTd3V3ev3//j+XUMDc3lwYNGkiDBg1ErVZLr169ZNGiRTJixIh/TKQTERGlF2tKERERGdmBAwdk7Nix4ubmJm3btv3sfK9fv042zcfHR0REacaUNWtWEZEUk0RpsWLFCp2mTxs2bJCnT5/qJD3c3d3lxIkTEhcXp0zbvn27PHz4UGdZ+pTN399fEhIS5KefftKZPnPmTFGpVP+YdNGHv7+/REREyLp165Rp8fHxMnfuXMmWLZtUrVrVYHH0WZ/w8HCdPowePnwoW7duldq1a0vGjBklISEhWXMyBwcHcXZ2/scmbR8/fpRNmzZJ/fr1pXnz5sn+9enTR6KiomTbtm0ikjgq3sWLF5ON8Cby77XQfH19xcHBQRYuXKhTpj/++EOuX78uAQEBIpI4ClxMTIzOd93d3SV79uzK9968eZMsXtJ9PyVZsmSRwYMHy/Xr12Xw4MEplnnVqlVy6tQpEUmscZd0nvXr18vjx491pn1uXy5VqpS4u7vLtGnTUqzBpWl6mTFjRvHz85MtW7bo9Al2+/btZDXd/P39RUSU0fA0ZsyYISKibEd9tWzZUsLDw2X37t3JPnv79q3Ex8eLSOKIndoyZMigJKX/rfkkERFRerGmFBERkQH98ccf8tdff0l8fLw8e/ZMDhw4IHv37pV8+fLJtm3bdDqETmrMmDFy+PBhCQgIkHz58snz589l/vz5kidPHqlUqZKIJD7M29jYyMKFCyV79uySNWtWKVu2bKr7mUnK1tZWKlWqJJ07d5Znz57JrFmzpECBAtK9e3dlnm7dusmGDRukbt260rJlS/n7779l1apVOh2P61u2Bg0aSPXq1WXYsGFy7949KV68uOzZs0e2bt0qgYGByZadVj169JBFixZJp06d5OzZs+Lq6iobNmyQY8eOyaxZs1LdQfa/0Xd9vL29pU6dOtKvXz+xsLCQ+fPni4jI6NGjRSSxj6Q8efJI8+bNpXjx4pItWzbZt2+fnD59WqZPn/7Zcmzbtk2ioqKkYcOGKX5erlw5sbe3l9WrV0urVq0kJCRENmzYIC1atFCay71+/Vq2bdsmCxculOLFi382VqZMmWTy5MnSuXNnqVq1qrRp00aePXsms2fPFldXVxkwYICIJNYAq1mzprRs2VI8PT3FzMxMNm/eLM+ePZPWrVuLiMjy5ctl/vz50qRJE3F3d5eoqCj5+eefxcrKSknafE5ISIhcvXpVpk+fLgcPHpTmzZuLk5OTREREyJYtW+TUqVNy/PhxERGpX7++jBkzRjp37iwVKlSQy5cvy+rVq3Vq/In88768ZMkSqVevnnh5eUnnzp0ld+7c8vjxYzl48KBYWVnJ77//LiIio0aNkj179kjFihXlhx9+UJKW3t7ecuHCBSVW8eLFpWPHjrJ48WJ5+/atVK1aVU6dOiXLly+Xxo0bK53V6yskJES2bdsm9evXl06dOkmpUqUkOjpaLl++LBs2bJB79+5Jzpw5pVu3bvL69WupUaOG5MmTR+7fvy9z584VHx8fnZpbRERERvHlBv4jIiL6doSFhUFElH/m5uZwcnJCrVq1MHv2bERGRib7zo8//qgzNPz+/fvRqFEjODs7w9zcHM7OzmjTpk2yId23bt0KT09PZWh5zbD1VatWhZeXV4rlq1q1KqpWrar8ffDgQYgIfv31V4SGhsLBwQGZM2dGQEAA7t+/n+z706dPR+7cuWFhYYGKFSvizJkzyZb5T2Xr2LEj8uXLpzNvVFQUBgwYAGdnZ2TKlAkeHh6YOnUq1Gq1znwigt69eycrU758+dCxY8cU11fbs2fP0LlzZ+TMmRPm5uYoWrSoUq6kywsICPjX5QFA3rx50bBhw3Stz6pVq+Dh4QELCwuUKFECBw8eVOaJjY1FSEgIihcvjuzZsyNr1qwoXrw45s+f/4/latCgASwtLREdHf3ZeTp16oRMmTLh5cuXAIBXr16hT58+yJ07N8zNzZEnTx507NhR+Vyzr6xfvz7F5a1btw4lSpSAhYUFbG1t0bZtWzx69Ej5/OXLl+jduzcKFy6MrFmzwtraGmXLlsVvv/2mzHPu3Dm0adMGefPmhYWFBRwcHFC/fn2cOXPmH9dX24YNG1C7dm3Y2trCzMwMuXLlQqtWrXDo0CFlnpiYGAQHByNXrlzInDkzKlasiPDwcL32ZQA4f/48mjZtCjs7O1hYWCBfvnxo2bIl9u/fr7OM/fv3o0SJEjA3N4e7uzuWLFmC4OBgWFpa6sz36dMnjB49Gm5ubsiUKRNcXFwQGhqKmJgYnfn+aR9N6XiIiopCaGgoChQoAHNzc+TMmRMVKlTAtGnTEBcXp7PdHBwcYG5ujrx58+L777/H06dPU7PZiYiI0kUFfMM9hBIREREZga2trQQEBCh9hRGlVuPGjeXq1asp9itGRET0X8M+pYiIiIj08Pfff8ubN2/E09PzSxeFvnIfP37U+fvWrVuyc+dOqVat2pcpEBER0VeGNaWIiIiIUuHOnTuyc+dOWbBggdy+fVv++uuvNPflRf8NuXLlkk6dOkn+/Pnl/v37smDBAomNjZXz58+Lh4fHly4eERHRF8eOzomIiIhS4fDhwxIUFCReXl6ydetWJqToX9WtW1d+/fVXiYiIEAsLCylfvrxMmDCBCSkiIqL/jzWliIiIiIiIiIjI5NinFBERERERERERmRyTUkREREREREREZHLsU0pE1Gq1PHnyRLJnzy4qlepLF4eIiIiIiIiI6H8WAImKihJnZ2fJkOHz9aGYlBKRJ0+eiIuLy5cuBhERERERERHRN+Phw4eSJ0+ez37OpJSIZM+eXUQSN5aVldUXLg0RERERERER0f+uyMhIcXFxUfItn8OklIjSZM/KyopJKSIiIiIiIiIiA/i3LpLY0TkREREREREREZkck1JERERERERERGRyTEoREREREREREZHJMSlFREREREREREQmx6QUERERERERERGZHJNSRERERERERERkckxKERERERERERGRyTEpRUREREREREREJsekFBERERERERERmZzZly4AGZbrkB1GXf69SQFGXT4RERERERER/TewphQREREREREREZkck1JERERERERERGRyTEoREREREREREZHJMSlFREREREREREQmx6QUERERERERERGZHJNSRERERERERERkckxKERERERERERGRyTEpRUREREREREREJsekFBERERERERERmRyTUkREREREREREZHJMShERERERERERkcl90aRUQkKCjBgxQtzc3CRz5szi7u4uY8eOFQDKPABk5MiRkitXLsmcObP4+fnJrVu3dJbz+vVradu2rVhZWYmNjY107dpV3r9/b+rVISIiIiIiIiKiVPqiSanJkyfLggUL5KeffpLr16/L5MmTZcqUKTJ37lxlnilTpsicOXNk4cKFcvLkScmaNavUqVNHYmJilHnatm0rV69elb1798r27dvl8OHD0qNHjy+xSkRERERERERElAoqaFdLMrH69euLo6OjLF26VJnWrFkzyZw5s6xatUoAiLOzswQHB8vAgQNFROTdu3fi6Ogoy5Ytk9atW8v169fF09NTTp8+Lb6+viIismvXLvH395dHjx6Js7Pzv5YjMjJSrK2t5d27d2JlZWWclTUR1yE7jLr8e5MCjLp8IiIiIiIiIvrflto8yxetKVWhQgXZv3+/3Lx5U0RELl68KEePHpV69eqJiMjdu3clIiJC/Pz8lO9YW1tL2bJlJTw8XEREwsPDxcbGRklIiYj4+flJhgwZ5OTJkynGjY2NlcjISJ1/RERERERERERkOmZfMviQIUMkMjJSChcuLBkzZpSEhAQZP368tG3bVkREIiIiRETE0dFR53uOjo7KZxEREeLg4KDzuZmZmdja2irzJDVx4kQZPXq0oVeHiIiIiIiIiIhS6YvWlPrtt99k9erVsmbNGjl37pwsX75cpk2bJsuXLzdq3NDQUHn37p3y7+HDh0aNR0REREREREREur5oTamQkBAZMmSItG7dWkREihYtKvfv35eJEydKx44dxcnJSUREnj17Jrly5VK+9+zZM/Hx8REREScnJ3n+/LnOcuPj4+X169fK95OysLAQCwsLI6wRERERERERERGlxhetKfXhwwfJkEG3CBkzZhS1Wi0iIm5ubuLk5CT79+9XPo+MjJSTJ09K+fLlRUSkfPny8vbtWzl79qwyz4EDB0StVkvZsmVNsBZERERERERERKSvL1pTqkGDBjJ+/HjJmzeveHl5yfnz52XGjBnSpUsXERFRqVQSGBgo48aNEw8PD3Fzc5MRI0aIs7OzNG7cWEREihQpInXr1pXu3bvLwoUL5dOnT9KnTx9p3bp1qkbeIyIiIiIiIiIi0/uiSam5c+fKiBEjpFevXvL8+XNxdnaW77//XkaOHKnMM2jQIImOjpYePXrI27dvpVKlSrJr1y6xtLRU5lm9erX06dNHatasKRkyZJBmzZrJnDlzvsQqERERERERERFRKqgA4EsX4kuLjIwUa2treffunVhZWX3p4qSL65AdRl3+vUkBRl0+EREREREREf1vS22e5Yv2KUVERERERERERP9NTEoREREREREREZHJMSlFREREREREREQmx6QUERERERERERGZHJNSRERERERERERkckxKERERERERERGRyTEpRUREREREREREJsekFBERERERERERmRyTUkREREREREREZHJMShERERERERERkckxKUVERERERERERCbHpBQREREREREREZkck1JERERERERERGRyTEoREREREREREZHJMSlFREREREREREQmx6QUERERERERERGZHJNSRERERERERERkckxKERERERERERGRyTEpRUREREREREREJsekFBERERERERERmRyTUkREREREREREZHJMShERERERERERkckxKUVERERERERERCZn9qULQP/7XIfsMOry700KMOryiYiIiIiIiMj0WFOKiIiIiIiIiIhMjkkpIiIiIiIiIiIyOSaliIiIiIiIiIjI5JiUIiIiIiIiIiIik2NSioiIiIiIiIiITI5JKSIiIiIiIiIiMjkmpYiIiIiIiIiIyOSYlCIiIiIiIiIiIpNjUoqIiIiIiIiIiEyOSSkiIiIiIiIiIjI5JqWIiIiIiIiIiMjk9E5K7dq1S44ePar8PW/ePPHx8ZHvvvtO3rx5Y9DCERERERERERHRt0nvpFRISIhERkaKiMjly5clODhY/P395e7duxIUFGTwAhIRERERERER0bfHTN8v3L17Vzw9PUVEZOPGjVK/fn2ZMGGCnDt3Tvz9/Q1eQCIiIiIiIiIi+vboXVPK3NxcPnz4ICIi+/btk9q1a4uIiK2trVKDioiIiIiIiIiI6J/oXVOqUqVKEhQUJBUrVpRTp07JunXrRETk5s2bkidPHoMXkIiIiIiIiIiIvj1615T66aefxMzMTDZs2CALFiyQ3Llzi4jIH3/8IXXr1jV4AYmIiIiIiIiI6Nujd02pvHnzyvbt25NNnzlzpkEKRERERERERERE3z69k1IiIgkJCbJ582a5fv26iIgUKVJEGjduLGZmaVocERERERERERH9x+jdfO/q1avi4eEhHTt2lM2bN8vmzZulU6dO4uHhIVeuXNG7AI8fP5Z27dqJnZ2dZM6cWYoWLSpnzpxRPgcgI0eOlFy5cknmzJnFz89Pbt26pbOM169fS9u2bcXKykpsbGyka9eu8v79e73LQkREREREREREpqF3Uqpbt27i7e0tjx49knPnzsm5c+fk4cOHUqxYMenRo4dey3rz5o1UrFhRMmXKJH/88Ydcu3ZNpk+fLjly5FDmmTJlisyZM0cWLlwoJ0+elKxZs0qdOnUkJiZGmadt27Zy9epV2bt3r2zfvl0OHz6sd1mIiIiIiIiIiMh09G5vd+HCBTlz5oxO4ihHjhwyfvx4KV26tF7Lmjx5sri4uEhYWJgyzc3NTfl/ADJr1iwZPny4NGrUSEREVqxYIY6OjrJlyxZp3bq1XL9+XXbt2iWnT58WX19fERGZO3eu+Pv7y7Rp08TZ2VnfVSQiIiIiIiIiIiPTu6ZUwYIF5dmzZ8mmP3/+XAoUKKDXsrZt2ya+vr7SokULcXBwkBIlSsjPP/+sfH737l2JiIgQPz8/ZZq1tbWULVtWwsPDRUQkPDxcbGxslISUiIifn59kyJBBTp48mWLc2NhYiYyM1PlHRERERERERESmk6qklHbyZuLEidKvXz/ZsGGDPHr0SB49eiQbNmyQwMBAmTx5sl7B79y5IwsWLBAPDw/ZvXu3/PDDD9KvXz9Zvny5iIhERESIiIijo6PO9xwdHZXPIiIixMHBQedzMzMzsbW1VeZJauLEiWJtba38c3Fx0avcRERERERERESUPqlqvmdjYyMqlUr5G4C0bNlSmQZAREQaNGggCQkJqQ6uVqvF19dXJkyYICIiJUqUkCtXrsjChQulY8eOqV6OvkJDQyUoKEj5OzIykokpIiIiIiIiIiITSlVS6uDBg0YJnitXLvH09NSZVqRIEdm4caOIiDg5OYmIyLNnzyRXrlzKPM+ePRMfHx9lnufPn+ssIz4+Xl6/fq18PykLCwuxsLAw1GoQEREREREREZGeUpWUqlq1qlGCV6xYUW7cuKEz7ebNm5IvXz4RSez03MnJSfbv368koSIjI+XkyZPyww8/iIhI+fLl5e3bt3L27FkpVaqUiIgcOHBA1Gq1lC1b1ijlJiIiIiIiIiKi9NF79D0Rkbdv38rSpUvl+vXrIiLi5eUlXbp0EWtra72WM2DAAKlQoYJMmDBBWrZsKadOnZLFixfL4sWLRUREpVJJYGCgjBs3Tjw8PMTNzU1GjBghzs7O0rhxYxFJrFlVt25d6d69uyxcuFA+ffokffr0kdatW3PkPSIiIiIiIiKir5Teo++dOXNG3N3dZebMmfL69Wt5/fq1zJgxQ9zd3eXcuXN6Lat06dKyefNm+fXXX8Xb21vGjh0rs2bNkrZt2yrzDBo0SPr27Ss9evSQ0qVLy/v372XXrl1iaWmpzLN69WopXLiw1KxZU/z9/aVSpUpKYouIiIiIiIiIiL4+Kmh6KU+lypUrS4ECBeTnn38WM7PEilbx8fHSrVs3uXPnjhw+fNgoBTWmyMhIsba2lnfv3omVldWXLk66uA7ZYdTl35sU8FXEJCIiIiIiIqKvU2rzLHo33ztz5oxOQkpExMzMTAYNGiS+vr5pKy0REREREREREf2n6N18z8rKSh48eJBs+sOHDyV79uwGKRQREREREREREX3b9E5KtWrVSrp27Srr1q2Thw8fysOHD2Xt2rXSrVs3adOmjTHKSERERERERERE3xi9m+9NmzZNVCqVdOjQQeLj40VEJFOmTPLDDz/IpEmTDF5AIiIiIiIiIiL69uidlDI3N5fZs2fLxIkT5e+//xYREXd3d8mSJYvBC0dERERERERERN8mvZNSGlmyZJGiRYsasixERERERERERPQfkeqkVNOmTf99YWZm4uTkJLVq1ZIGDRqkq2BERERERERERPTtSnVH59bW1v/6L3PmzHLr1i1p1aqVjBw50pjlJiIiIiIiIiKi/2GprikVFhaW6oVu375devXqJWPGjElToYiIiIiIiIiI6NuW6ppS+qhUqZL4+voaY9FERERERERERPQNMEpSysbGRjZt2mSMRRMRERERERER0TfAKEkpIiIiIiIiIiKif8KkFBERERERERERmVyqklIlS5aUN2/eiIjImDFj5MOHD0YtFBERERERERERfdtSlZS6fv26REdHi4jI6NGj5f3790YtFBERERERERERfdvMUjOTj4+PdO7cWSpVqiQAZNq0aZItW7YU5x05cqRBC0hERERERERERN+eVCWlli1bJj/++KNs375dVCqV/PHHH2JmlvyrKpWKSSkiIiIiIiIiIvpXqUpKFSpUSNauXSsiIhkyZJD9+/eLg4ODUQtGRERERERERETfrlQlpbSp1WpjlIOIiIiIiIiIiP5D9E5KiYj8/fffMmvWLLl+/bqIiHh6ekr//v3F3d3doIUjIiIiIiIiIqJvU6pG39O2e/du8fT0lFOnTkmxYsWkWLFicvLkSfHy8pK9e/cao4xERERERERERPSN0bum1JAhQ2TAgAEyadKkZNMHDx4stWrVMljhiIiIiIiIiIjo26R3Tanr169L165dk03v0qWLXLt2zSCFIiIiIiIiIiKib5veSSl7e3u5cOFCsukXLlzgiHxERERERERERJQqejff6969u/To0UPu3LkjFSpUEBGRY8eOyeTJkyUoKMjgBSQiIiIiIiIiom+P3kmpESNGSPbs2WX69OkSGhoqIiLOzs4yatQo6devn8ELSERERERERERE3x69k1IqlUoGDBggAwYMkKioKBERyZ49u8ELRkRERERERERE3y69k1LamIwiIiIiIiIiIqK00LujcyIiIiIiIiIiovRiUoqIiIiIiIiIiEyOSSkiIiIiIiIiIjI5vZJSnz59kpo1a8qtW7eMVR4iIiIiIiIiIvoP0CsplSlTJrl06ZKxykJERERERERERP8Rejffa9eunSxdutQYZSEiIiIiIiIiov8IM32/EB8fL7/88ovs27dPSpUqJVmzZtX5fMaMGQYrHBERERERERERfZv0TkpduXJFSpYsKSIiN2/e1PlMpVIZplRERERERERERPRN0zspdfDgQWOUg4iIiIiIiIiI/kP07lNK4/bt27J79275+PGjiIgAMFihiIiIiIiIiIjo26Z3UurVq1dSs2ZNKViwoPj7+8vTp09FRKRr164SHBxs8AISEREREREREdG3R+/mewMGDJBMmTLJgwcPpEiRIsr0Vq1aSVBQkEyfPt2gBST6HNchO4y27HuTAoy2bCIiIiIiIiJKQ1Jqz549snv3bsmTJ4/OdA8PD7l//77BCkZERERERERERN8uvZvvRUdHS5YsWZJNf/36tVhYWBikUERERERERERE9G3TOylVuXJlWbFihfK3SqUStVotU6ZMkerVq6e5IJMmTRKVSiWBgYHKtJiYGOndu7fY2dlJtmzZpFmzZvLs2TOd7z148EACAgIkS5Ys4uDgICEhIRIfH5/mchARERERERERkfHp3XxvypQpUrNmTTlz5ozExcXJoEGD5OrVq/L69Ws5duxYmgpx+vRpWbRokRQrVkxn+oABA2THjh2yfv16sba2lj59+kjTpk2VOAkJCRIQECBOTk5y/Phxefr0qXTo0EEyZcokEyZMSFNZiIiIiIiIiIjI+PSuKeXt7S03b96USpUqSaNGjSQ6OlqaNm0q58+fF3d3d70L8P79e2nbtq38/PPPkiNHDmX6u3fvZOnSpTJjxgypUaOGlCpVSsLCwuT48eNy4sQJEUns3+ratWuyatUq8fHxkXr16snYsWNl3rx5EhcXp3dZiIiIiIiIiIjINPROSomIWFtby7Bhw+S3336TnTt3yrhx4yRXrlxpKkDv3r0lICBA/Pz8dKafPXtWPn36pDO9cOHCkjdvXgkPDxcRkfDwcClatKg4Ojoq89SpU0ciIyPl6tWraSoPEREREREREREZn97N90RE3rx5I0uXLpXr16+LiIinp6d07txZbG1t9VrO2rVr5dy5c3L69Olkn0VERIi5ubnY2NjoTHd0dJSIiAhlHu2ElOZzzWefExsbK7GxscrfkZGRepWbiIiIiIiIiIjSR++aUocPHxZXV1eZM2eOvHnzRt68eSNz5swRNzc3OXz4cKqX8/DhQ+nfv7+sXr1aLC0t9S1GukycOFGsra2Vfy4uLiaNT0RERERERET0X6d3Uqp3797SqlUruXv3rmzatEk2bdokd+7ckdatW0vv3r1TvZyzZ8/K8+fPpWTJkmJmZiZmZmby559/ypw5c8TMzEwcHR0lLi5O3r59q/O9Z8+eiZOTk4iIODk5JRuNT/O3Zp6UhIaGyrt375R/Dx8+THW5iYiIiIiIiIgo/fROSt2+fVuCg4MlY8aMyrSMGTNKUFCQ3L59O9XLqVmzply+fFkuXLig/PP19ZW2bdsq/58pUybZv3+/8p0bN27IgwcPpHz58iIiUr58ebl8+bI8f/5cmWfv3r1iZWUlnp6en41tYWEhVlZWOv+IiIiIiIiIiMh09O5TqmTJknL9+nUpVKiQzvTr169L8eLFU72c7Nmzi7e3t860rFmzip2dnTK9a9euEhQUJLa2tmJlZSV9+/aV8uXLS7ly5UREpHbt2uLp6Snt27eXKVOmSEREhAwfPlx69+4tFhYW+q4aERERERERERGZSKqSUpcuXVL+v1+/ftK/f3+5ffu2khw6ceKEzJs3TyZNmmTQws2cOVMyZMggzZo1k9jYWKlTp47Mnz9f+Txjxoyyfft2+eGHH6R8+fKSNWtW6dixo4wZM8ag5SAiIiIiIiIiIsNSAcC/zZQhQwZRqVTyb7OqVCpJSEgwWOFMJTIyUqytreXdu3f/8035XIfsMOry700K+CpiGjvu52ISERERERER0T9LbZ4lVTWl7t69a7CCERERERERERERpSoplS9fPmOXg4iIiIiIiIiI/kP07uhcROTJkydy9OhRef78uajVap3P+vXrZ5CCERERERERERHRt0vvpNSyZcvk+++/F3Nzc7GzsxOVSqV8plKpmJQiIiIiIiIiIqJ/pXdSasSIETJy5EgJDQ2VDBkyGKNMRERERERERET0jdM7q/Thwwdp3bo1E1JERERERERERJRmeteU6tq1q6xfv16GDBlijPIQfdVch+ww2rLvTQow2rKJiIiIiIiIvjZ6J6UmTpwo9evXl127dknRokUlU6ZMOp/PmDHDYIUjIiIiIiIiIqJvU5qSUrt375ZChQqJiCTr6JyIiIiIiIiIiOjf6J2Umj59uvzyyy/SqVMnIxSHiIiIiIiIiIj+C/ROSllYWEjFihWNURYiSgH7sSIiIiIiIqJvkd5D6PXv31/mzp1rjLIQEREREREREdF/hN41pU6dOiUHDhyQ7du3i5eXV7KOzjdt2mSwwhERERERERER0bdJ76SUjY2NNG3a1BhlISIiIiIiIiKi/wi9k1JhYWHGKAcREREREREREf2H6N2nFBERERERERERUXrpXVPKzc1NVCrVZz+/c+dOugpERERERERERETfPr2TUoGBgTp/f/r0Sc6fPy+7du2SkJAQQ5WLiIiIiIiIiIi+YXonpfr375/i9Hnz5smZM2fSXSAiIiIiIiIiIvr2GaxPqXr16snGjRsNtTgiIiIiIiIiIvqGGSwptWHDBrG1tTXU4oiIiIiIiIiI6Bumd/O9EiVK6HR0DkAiIiLkxYsXMn/+fIMWjoiIiIiIiIiIvk16J6UaN26s83eGDBnE3t5eqlWrJoULFzZUuYiIiIiIiIiI6Bumd1Lqxx9/NEY5iIiIiIiIiIjoP8RgfUoRERERERERERGlVqprSmXIkEGnL6mUqFQqiY+PT3ehiIiIiIiIiIjo25bqpNTmzZs/+1l4eLjMmTNH1Gq1QQpFRERERERERETftlQnpRo1apRs2o0bN2TIkCHy+++/S9u2bWXMmDEGLRwREREREREREX2b0tSn1JMnT6R79+5StGhRiY+PlwsXLsjy5cslX758hi4fERERERERERF9g/RKSr17904GDx4sBQoUkKtXr8r+/fvl999/F29vb2OVj4iIiIiIiIiIvkGpbr43ZcoUmTx5sjg5Ocmvv/6aYnM+IiIiIiIiIiKi1Eh1UmrIkCGSOXNmKVCggCxfvlyWL1+e4nybNm0yWOGIiIiIiIiIiOjblOqkVIcOHUSlUhmzLERERERERERE9B+R6qTUsmXLjFgMIvqauA7ZYbRl35sUYLRlExERERER0f+ONI2+R0RERERERERElB5MShERERERERERkckxKUVERERERERERCbHpBQREREREREREZkck1JERERERERERGRyTEoREREREREREZHJMSlFREREREREREQmx6QUERERERERERGZnNmXLgARkYiI65AdRlv2vUkBRls2ERERERERpc0XrSk1ceJEKV26tGTPnl0cHBykcePGcuPGDZ15YmJipHfv3mJnZyfZsmWTZs2aybNnz3TmefDggQQEBEiWLFnEwcFBQkJCJD4+3pSrQkREREREREREeviiNaX+/PNP6d27t5QuXVri4+Nl6NChUrt2bbl27ZpkzZpVREQGDBggO3bskPXr14u1tbX06dNHmjZtKseOHRMRkYSEBAkICBAnJyc5fvy4PH36VDp06CCZMmWSCRMmfMnVI6KvHGtnERERERERfTlfNCm1a9cunb+XLVsmDg4OcvbsWalSpYq8e/dOli5dKmvWrJEaNWqIiEhYWJgUKVJETpw4IeXKlZM9e/bItWvXZN++feLo6Cg+Pj4yduxYGTx4sIwaNUrMzc2/xKoREREREREREdE/+Ko6On/37p2IiNja2oqIyNmzZ+XTp0/i5+enzFO4cGHJmzevhIeHi4hIeHi4FC1aVBwdHZV56tSpI5GRkXL16lUTlp6IiIiIiIiIiFLrq+noXK1WS2BgoFSsWFG8vb1FRCQiIkLMzc3FxsZGZ15HR0eJiIhQ5tFOSGk+13yWktjYWImNjVX+joyMNNRqEBH9IzYZJCIiIiIiSvTV1JTq3bu3XLlyRdauXWv0WBMnThRra2vln4uLi9FjEhERERERERHR//kqklJ9+vSR7du3y8GDByVPnjzKdCcnJ4mLi5O3b9/qzP/s2TNxcnJS5kk6Gp/mb808SYWGhsq7d++Ufw8fPjTg2hARERERERER0b/5okkpANKnTx/ZvHmzHDhwQNzc3HQ+L1WqlGTKlEn279+vTLtx44Y8ePBAypcvLyIi5cuXl8uXL8vz58+Vefbu3StWVlbi6emZYlwLCwuxsrLS+UdERERERERERKbzRfuU6t27t6xZs0a2bt0q2bNnV/qAsra2lsyZM4u1tbV07dpVgoKCxNbWVqysrKRv375Svnx5KVeunIiI1K5dWzw9PaV9+/YyZcoUiYiIkOHDh0vv3r3FwsLiS64eEdFXwZj9WImwLysiIiIiIkqbL5qUWrBggYiIVKtWTWd6WFiYdOrUSUREZs6cKRkyZJBmzZpJbGys1KlTR+bPn6/MmzFjRtm+fbv88MMPUr58ecmaNat07NhRxowZY6rVICIiIiIiIiIiPX3RpBSAf53H0tJS5s2bJ/PmzfvsPPny5ZOdO3casmhERERERERERGREX0VH50RERERERERE9N/CpBQREREREREREZkck1JERERERERERGRyTEoREREREREREZHJMSlFREREREREREQmx6QUERERERERERGZHJNSRERERERERERkckxKERERERERERGRyTEpRUREREREREREJsekFBERERERERERmRyTUkREREREREREZHJMShERERERERERkcmZfekCEBHRt8d1yA6jLv/epACjLp+IiIiIiIyPNaWIiIiIiIiIiMjkmJQiIiIiIiIiIiKTY1KKiIiIiIiIiIhMjn1KERHRN8OYfVmxHysiIiIiIsNiTSkiIiIiIiIiIjI5JqWIiIiIiIiIiMjk2HyPiIgoHdhkkIiIiIgobVhTioiIiIiIiIiITI5JKSIiIiIiIiIiMjkmpYiIiIiIiIiIyOSYlCIiIiIiIiIiIpNjUoqIiIiIiIiIiEyOSSkiIiIiIiIiIjI5JqWIiIiIiIiIiMjkzL50AYiIiEg/rkN2GG3Z9yYFfDUxiYiIiOjbxqQUERERfZWYCCMiIiL6trH5HhERERERERERmRyTUkREREREREREZHJMShERERERERERkckxKUVERERERERERCbHpBQREREREREREZkck1JERERERERERGRyZl+6AERERERfC9chO4y27HuTAr6amERERERfAyaliIiIiP5jjJkIE2EyjIiIiFKHzfeIiIiIiIiIiMjkmJQiIiIiIiIiIiKTY1KKiIiIiIiIiIhMjn1KEREREZHRsR8rIiIiSopJKSIiIiL6ZnF0QyIioq8Xk1JERERERAb0JRJh/5WYRET0bflmklLz5s2TqVOnSkREhBQvXlzmzp0rZcqU+dLFIiIiIiIiA2HyjYjo2/JNJKXWrVsnQUFBsnDhQilbtqzMmjVL6tSpIzdu3BAHB4cvXTwiIiIiIqJU+9aSb/8Ul4j+276JpNSMGTOke/fu0rlzZxERWbhwoezYsUN++eUXGTJkyBcuHRERERERESX1pRJh31rSjwk/+l/2P5+UiouLk7Nnz0poaKgyLUOGDOLn5yfh4eEpfic2NlZiY2OVv9+9eyciIpGRkcYtrAmoYz8YdfkpbaMvEdPYcRmTMRkzfXF5XmBMxvzvxvxcXJ4XGJMx/7sxPxeX5wXjxvT+cbfRYl4ZXec/HZP+nWa/BPCP86nwb3N85Z48eSK5c+eW48ePS/ny5ZXpgwYNkj///FNOnjyZ7DujRo2S0aNHm7KYRERERERERET/KQ8fPpQ8efJ89vP/+ZpSaREaGipBQUHK32q1Wl6/fi12dnaiUqm+YMlMKzIyUlxcXOThw4diZWXFmIz5PxOXMRmTMRnza4jLmIzJmF9vzC8VlzEZkzG/3phfKu6XWtcvDYBERUWJs7PzP873P5+Uypkzp2TMmFGePXumM/3Zs2fi5OSU4ncsLCzEwsJCZ5qNjY2xivjVs7KyMvnBwZjfVswvFZcxGZMxGfNriMuYjMmYX2/MLxWXMRmTMb/emF8q7pda1y/J2tr6X+fJYIJyGJW5ubmUKlVK9u/fr0xTq9Wyf/9+neZ8RERERERERET09fifryklIhIUFCQdO3YUX19fKVOmjMyaNUuio6OV0fiIiIiIiIiIiOjr8k0kpVq1aiUvXryQkSNHSkREhPj4+MiuXbvE0dHxSxftq2ZhYSE//vhjsqaMjMmYX3tcxmRMxmTMryEuYzImY369Mb9UXMZkTMb8emN+qbhfal3/V/zPj75HRERERERERET/e/7n+5QiIiIiIiIiIqL/PUxKERERERERERGRyTEpRUREREREREREJsekFBERERERERERmRyTUt8g9l1vXNy+RJSUqc8LPA8REX3bjh49KjExMV+6GGRA/4Vr96RJk2Tp0qVfuhj0P4ZJqW+MWq0WlUr1pYthUqY+wX/J7fvp0yeTxzTF9r1586YSZ/78+fL8+XOjx/xS1Gr1fyLmf8X06dNFxPTnBU28+Ph4k8TT3odMtT99qZv3/8JDw5fyJc5F/D2/Lf+V69mCBQukSpUqsmXLFomNjf3SxTG6pMfpt3rcaq7dN2/eNEm8L7Ednz59Kt27d5c1a9aYPDb972JS6hty8uRJefbsmYiIhISEyMKFC00WW3PSO3PmjFy/ft2osZLekJjqYfD48eNy/PhxERHp27evLF682Ogxjx07ptyMTJw4UX7//XejX2DOnTsnHz9+FBGRqVOnyokTJ4wa7+TJk9K6dWsJCwuT/v37S58+fSQyMtKoMTVMfbFWq9WSIUPiaXfVqlVy9uxZk8TVxNy9e7dcu3bNJDFN/eCgHS8hIcEkMS9evCghISHSunVrk8QT0V3PGTNmSLt27Yx+vABQ9qHly5fLr7/+avQEufYLlvfv3+s8lBnzuAWgxF26dKkcPnzYaLG+NqY4H2r2o19++cUk53nt3/PXX3+VKVOmGD3ml5LS7/etJXC0r6Hr16+XAwcOmDS+9jY29vHyww8/SPfu3aVHjx6yefPmbzoxpTlODxw4ICNHjpSEhASj39snPTZMeaxs3LhRevfuLZGRkUbdj7Svow8ePJCrV6/K27dvjRZPY/bs2TJ06FDp1KmTrF692ujxvhQAJrvf/E8A/c9LSEhAREQEVCoVOnfujO7du8PKygpXrlwxaTl27twJCwsL7N27F58+fTJKjISEBOX/ly9fjuDgYPTq1Qvbtm0zSjwAUKvVePz4MXx8fNC6dWu0bdsW5ubmuHjxotFiAsDff/+N4sWLo2nTpujTpw8yZsyIq1evGjXmlStXUKJECQwYMAB9+vSBSqXC9evXjRrz/fv36NixI5ydnZE9e3acOXMGABAfH2/UuGq1GgAQHh6OlStXYsWKFSaJBwCDBw+Gs7MzJk+ejKioKKPF1D5ejhw5Ag8PD/To0QN37twxWsyknj59avQY2tt20aJF6N27N8aOHYvbt28bPe7evXthb2+Pli1bGjUWoPt7hoeHY8SIEVCpVAgMDMT79++NHvPBgwdwdXVF+fLlsXnzZqOd57WNGzcO5cqVQ+3atTF16lRluvZvbija63ru3DlUrlwZ3t7eOHfunMFjadOsy4ULF7Bz504cP37cqPG0Y964cQNnzpwx6TkhMjISOXLkwNChQ40aR/v3PHXqFOrUqYOCBQsiLCzMqHE/xxj7bNJlnzx5EosXL8a4ceNw+fJlo8VLGtcUtGMNGjQI7u7umDp1Kl6+fGn0cmiWn/ScZ6y42vc/3bt3R5YsWfDrr78iJibGKPG0adYpOjra6LG0423YsAF2dnbo27cvzp8/n+xzQ9I+N2zZsgX37983eIx/snnzZlhYWCj3u8ZYR+1lDhs2DKVLl0b27NnRoEEDDBgwwODxUhIaGopMmTJh1apVJolnatr3mGFhYThx4sQXLM3/PialviGXL1+GpaUlLC0tsWfPHpPGfvXqFSZMmKDz0GBMISEhcHFxQadOnRAYGAiVSoVZs2bpXGgM7dChQ8idOzfMzMx0EhjGuin59OkT1q1bB3t7e2TJkkU52cXFxRklHpB4IzR58mQ4OjoiS5YsysORsR4+NTdeCxYsgLW1NYoWLYqff/5ZufEy5u8JJN4YWFpawsfHB5kyZUK9evVw7949o8acOHEicubMibNnzxr1t9TeL6dMmYLg4GDkypULlpaW6NmzJ27dumWUuNq/2aZNm5AtWzacPn3aKLEA3fUcPXo0smbNilatWiFr1qzw8/MzasJaE3/Pnj2ws7MzSWIKSHwgy58/PwYOHIjatWvDwsICnTt3NlpiCgCCg4PRsmVLlCtXDra2tnB3d8emTZsMvg9r7z+zZs2CnZ0dxowZg86dO8PW1ha9e/dWPjfWuXfUqFFo0qQJSpcuDQsLC/j4+CA8PNwosTTWr18POzs75MqVC4ULF0bnzp2NGg8ANm7cCBsbG+TPnx+ZM2fGkiVLEBsba/S4ADBixAg0aNAAkZGRRk8oDBo0CAEBAahRowZsbW1RsGBBzJs3z6gxNev04sULvHnzRvnbmNe0DRs2wNHRETVq1ED9+vWhUqkwb948fPjwwSjxNOt04MABDB48GC1btkRYWJjRX0RorqGmegDUrOe+ffvQpUsXtGzZEr169TJ6Ul773Nq1a1eTJKY067pr1y6EhITg6NGjRoul7cSJE7C2tsbPP/+sM90YLye1zzehoaFwc3PD5MmT8fHjR6MmwNRqtc7x36ZNGzRq1Mio120AGD9+PHLmzIm9e/ciIiICLVu2hI2NjVHvy7QNGjTIJIkpzW938eJF7NmzB0eOHDFqvAsXLsDMzAxr167F4MGDkSNHDpO+3PkWMSn1jYiLi1NO6mZmZujWrRsePHigfG7Mm76rV6/C3Nwcbm5uWL58udHiaOzatQsuLi7KQ8Iff/wBlUqFZcuWGSWeZtudPn0aJUuWhLe3N9q1a6dzwjP0jaZmeQcOHEDevHnh6emJli1bKrVqDH2hTloDLV++fPDy8kJwcDDevXtn8JhJt9eFCxdw+fJldO7cGeXKlcPcuXON9nCk+T0jIyPh7++P5cuX4/Xr17h27RpcXV1RqVIl/P3330aJHRUVhUaNGmHhwoUAgHv37mHnzp1o0KABxo0bhwsXLhg85sSJE5E9e3bs3LkTp06dwsiRI+Hh4YEffvjB4DWJtH/XlStXYt68eVCpVPD29jb6DdDVq1fRsmVLJZH6+PFjVKlSBTVr1sSWLVuMGjshIcFkialDhw7B2toahw8fBpB47t+2bRuyZs2Krl27GqXm3dKlS5EjRw6cP38eEREReP36NSpUqABvb2+j1Zg6evQoFi1ahB07dgBIPHZWrFgBS0tL9OrVS5nP0Ne2n376CVmzZsWhQ4fw5MkTrFmzBnXq1IGPj4/BH4I1ZX/16hVq166NFStW4NatW5g3bx6KFy+ORo0aGTSedsxHjx6hcOHCWLx4Mc6cOYPx48dDpVJhypQp+Pjxo8Hife7aePbsWVhaWmLjxo0Gi5WSFStWwNraGidPnkR0dDRu3bqFli1bokyZMsp52Fg2b96MQoUKwcfHBzVr1sTbt2+NFuvSpUvIlSsXlixZAgB4+/YtVCoVRo0aZbSYQOKLB2tra7Rv3x5DhgyBmZkZ2rVrh8ePHxs8llqtxqtXr1CrVi2lttvdu3exY8cOtGjRAoMHD8abN28MHhdI/C2zZcuG/v37Y8aMGXBxcUHJkiXx4sULg8ZJerxon986depkksTUxo0bkTlzZowePdroNeU15s6di/r16wMAXr9+jc2bN6NZs2YoWbIk1qxZY5SYo0aNgp2dHU6ePGnUGusaSc+rS5YsQfHixZVnNUM/R2iOFz8/P/z2228AgD179iBr1qzKecKQ+5FmX33y5Alu3ryp8ww6cOBAkySmNm3ahKxZs6JgwYJQqVQICQkx+HlX8zs9fvwYo0aNQubMmWFjY4MnT54AMH4rj28Zk1L/wz53Ajt9+jQyZcqEjh074uHDh0aLr32x7N+/P1QqFcaMGWOUE6v2f3/55RflZn3Dhg3Ili0bFi1aBCDxRsxQVdY/tx67d+9GmTJl0LJlS4O/RUoa882bN3j06BFWr16N0qVLo2nTpsneqqT3oqL9O/bq1Qu+vr64c+cOpkyZgrJly6Jv376IjIz8x3LqQ/u758+fx927d5U3q2/evEG7du1Qrlw5zJ8/X5l32LBhBr3527dvHxo2bIimTZvqJKAeP34MNzc3gyWmkm6nmJgYFCtWDM2aNcOuXbtQv359VK5cGQ0aNICjoyOCg4PTHVNDrVbjw4cPqFq1KoYNG6bz2cyZM2Fvb4+ePXsapYlbaGgonJycsGDBAgwdOhRlypRB7ty5jZaYWrBgAcqVK4eKFSvqvKW/c+cOqlSpAj8/P2zdutUgsT6378fFxWHPnj2wtbU1amLq999/R758+ZI9fK1ZswYqlQrBwcEGf/M6fPhwVK9eHfHx8coN18ePH1GyZEkULFgQGzduNGiNqfDwcKhUKmTPnh179+5Vpn/8+BErV65ElixZ0KdPH4PF00hISED79u3RpUsXnel79uxBmTJl4OPjY/CmfOHh4WjevDlatmyJly9fAkg8T6xZswZFixY1SmJq7969mDNnDnr37q2zP8+ZM8coiSkg8WXSn3/+qTOtb9++qFOnjsEf7LUNHToUlSpV0pn2119/oWbNmnB1dVUezgxFcz29dOkSrK2tMX78eMyYMQO+vr5wc3PDzZs3DRpPY9++fahbty4A4ObNm8iTJw969OihfP7q1Sud8hnCvXv3ULhwYSxYsECZli1bNgwePNhgMVI631avXh0NGzbEjh07UL9+fVSsWBEtWrRA9uzZ0bNnT4PF1nj27BlKliyJ6dOnA0i8T8iTJw++//57nfnSu22113Xx4sXo0qULOnbsiPHjxyvTu3XrZtTE1M2bN+Hu7q7cU2sYu3nZ8uXLoVKp8PPPP6NWrVoICAhA+/bt0alTJ2TOnBmPHj0yaOynT5+iatWq2Lx5M4DE3/TIkSPo2rUrli9frpyL00M7ObF27VpYW1tjyZIlOteQokWLokOHDumOpZH0d4qOjkbp0qVx6dIlbNu2DdmyZVOO15iYGCxZssQgzcU1cTdt2gRfX1+4uLigevXqaN26tbJfa5ryGTLJqFarldgvX75EmTJlEBYWhjt37mDjxo2wsLBAt27dlPNferVr1w4dO3ZU/l6wYAFUKhWyZMmis17GbuXxrWJS6n+U9g6/e/duLF++HNevX1eSBwcPHkSmTJnQpUsX3L17FwDQtGlTg9Rk+tzFqXfv3rCwsFBO8oamuUleuXIl/Pz8sHz5cmTPnl3nhmjjxo1o27Ytnj9/nq5Y2uu4ceNGLFmyBNu3b1embdmyBWXLlsV3332n3GjXqVMHK1euTHNM7d9037592Ldvn3Lx+vjxI8LCwlC6dGm0aNFCaevfq1cvnXKlx4MHD1CmTBkcPHgQQOIFa9y4cShbtqxOnzX9+vVT2sGnx+DBg5EnTx7kzp0bderUwb59+wAkJhbbt2+PsmXLonPnzqhXrx5sbW0N+vbh5MmTyJEjBywsLJTaSdpvPzw8PODt7a0cO2mh/XuGhYXhjz/+AADs378fbm5usLOzw7Bhw5T9Z8SIEWjYsKFB1zM+Ph61a9dW+g/QrtHSsWNH2Nraom/fvulaz6Tu3LmDvHnzKm/mAOD58+eoXbs2XFxcDJKYSnrBP3nyJAoWLAgrK6tkx8O9e/dQvXp1FC9eXKldZIi4v/76KyZNmoRhw4bh2bNnAP6vKZ+trS1atWqVrlia5SV16dIlmJmZJUuy3bp1C46OjlCpVDo1idJDs74hISHw8fFRpmuaA+3btw9mZmaoXLmyTvIorXE0Hj16hKlTp8La2hpDhgzR+ezjx49YtWoVVCoVpk2bluaYn9O3b19UrVo1WX8q48aNg0qlgq+vL06dOmWQWJ8+fcLUqVPh5uYGNzc3nc8+fvyINWvWoGTJkqhevbpB4mkMHDgQKpUKRYsWTZbcnDNnDszNzTFq1Kh0PfRqN1m5efMmnJ2dUbBgQTRv3hzh4eGIjo7GsWPHUKBAgWTnYEPQLGvWrFkoVaqUkqzWHFO7d+9G1qxZUb58eYMnpk6ePIl9+/ZhzJgxyrSnT5+ievXqcHV1NUrT6eXLl8PT0xM3b96Eq6srevTooWyD7du3o02bNgavMXD79m2UKVMGarUat27dgrOzM7p37658nt5+N7X3h23btuHQoUMAEmu/VapUCVmyZMHQoUOV8/ro0aPRsmVLg1xDtc+9z58/R4ECBfD+/Xs8efIEuXPn1klIGbqJ+KBBg+Dk5ITBgwdjzJgxUKlU6NSpk/J5jx49YGVlhaVLl6brZcD69euTJUlPnjyJ/Pnz49q1a8o0QyekNMt7//491Go1YmNjoVarMWDAALi4uKBbt244duwYgMQXlcWLF0/3y+ak55ZXr14hT548GDp0KE6cOIFWrVqhVKlSqFSpElQqVbprUWrXvFq3bh22b9+OwYMHo3Tp0ihYsCCCg4Px119/Yd26dQgICMClS5fSFQ/Q/Z008d+8eYOyZcuicePGsLW1xfz585V5bt26hTp16mDDhg3pjg0kvuzInDkzfvrpJzx69AgzZsyASqXSee4cOnQoVCqVzv1hWty/f19nfXft2oWBAweiU6dOOue5ffv2wcLCAt27d8fr16/TFXPx4sU4f/680opDrVbjxYsXOHHiBEaNGoXs2bMr1xImpdKGSan/QdoHYnBwMBwdHZEzZ04ULlwYP/74o/KAdPDgQWTNmhVVqlSBj48PChUqlO632ZrYR48exaRJkxAaGqpTHbNnz57InDmzwWolaKxYsQJt2rRBbGwsTp8+jdKlS8PS0hKTJk1S5omOjkZAQAC6d++erouo9neDgoJgb2+PfPnywdPTE999953y+datW1GpUiUUL14cxYoVg5ubm0FqC4SEhMDa2hpubm7InDmz0sY+NjYWy5YtQ+nSpVGkSBH4+fnB2dnZIE1npk+fDn9/f7Rr1w4xMTHKTV1sbCzGjx+PsmXLokqVKqhVqxYcHBzSFFN7u/7555/ImzcvDh48iJ9//hlt27aFq6srdu7cCQB49+4dQkND0bx5czRv3lzZroY80Z89exb29vZo3LixchHTlPHhw4coXry4QZI1ISEhyJ07N8aPH688AL5//16nanNCQgJq1aqFvn37pjnO57ZN37594ezsrLxp1Mw3cuRIZf+dM2cOAMPcfF67dk1pLqMd7969e3BxcUGxYsWUZGt6f8/Dhw8r57vLly+jcOHCqF+/frI3f7dv305WKyQ9Bg8eDBcXF9SqVQtVqlSBo6OjchMNJNascXBwgJ+fX5pjaJdVu+ZTXFwcOnbsiAoVKuj0Hfj8+XN8//33WLt2LTJlyoT169enK6a2q1evwtLSEqGhoTrTd+3ahc6dO6N06dKoWLGi3vEA3X1uwYIFyhvNiIgITJo0CVmyZMG4ceN0vvPhwwfs2rUrXee+z63r4sWL4e7ujvXr1+v0xfPbb7+hadOmaNWqFdq2bZus9mhavXjxArNnz4adnR26deum81lMTAzCwsJQsWJFg9d6HjduHDJkyJBis/fJkyfD1tbWIG+XNefQu3fv4ujRoyhTpgzKly+PChUq4MSJE/Dy8kLr1q3THedzv+exY8dgaWmJMWPG6CTZ9u/fj8aNG6NNmzaoU6eOwd6kR0VFwdPTEyqVKtnv+fTpU1SrVg0eHh7466+/0hxDc8xcuXJFaVL69OlT1KxZE1myZFFqXmi2yaBBg1C3bt10P5QldfbsWeTOnRv79++Hu7s7unfvrtw7nDlzBo0aNUrz4CxJOzX38PDAvHnzEB0djZiYGLx//z5ZbeZq1aqhX79+aV+hJH7//XfMnj0bUVFRKF++PBYuXIh8+fLh+++/V+5J7t27hwYNGigv1dLryJEjKFCggFILf/PmzciSJYvOy1cg8SVzjRo10hRDrVbjwoULKFiwYLLzyvr165EtWzblnkj7nvbcuXM617m0xgYSu91o3LgxqlevDn9/fyVRm7SG0uDBg+Hl5ZWu2pTa54Z169YpSfC5c+ciV65cyJIlCwYOHIhdu3YBQIq1ZfWxf/9+2NvbIyYmBgMGDICHh4fStOuvv/7Cb7/9Bk9PT1SvXh0FChRAjhw50j34gvY6btiwAU2aNFFi7ty5E1myZEGDBg2Ued+9ewd/f39Uq1Yt3UlctVqNT58+ITAwUHmJFBERARcXlxTvaUeNGqWT9NTX5MmTUbp0aZ3r85IlS6BSqZArVy5ln9Zsk3379iFbtmxo3bp1mpv3VqlSBQEBAUpCat68eShWrJiy7e7fv48hQ4Yge/bsOr/lpEmTcPbs2TTF/C9iUup/jPaF+tixY6hSpQpOnDiBly9fYvDgwShbtiyCgoKUB7WTJ09i8ODBGD58uHIDn94kxsaNG2FlZYX27dujSZMmKFy4MJo1a6Z83qtXL1hZWaU7E66hVqsxatQo+Pj4KLWlJk6ciFy5ciE4OBgHDhzAvn37ULt2bRQrVkxZv/Q+YN+5cwd16tTB5cuX8eTJE/zyyy8oVqwYGjRooCz78OHDmD9/PkaNGpXm7atdzuvXr8PT0xOnT5/GhQsXMHHiRGTIkEGpNh4XF4d9+/Ypo+NpYqXnovLhwweMHj0adnZ2KFOmjDJdc/KNi4vD8uXL0bNnT3Tp0iXdMZcvX46QkBCdhOKFCxfQoUMH5MuXT6lRFBcXh7i4uM+OepNa2ommK1eu4OXLl0otiPDwcOTIkQPNmzdXbsI0F7K0rF/SfW7RokXJOjXXvnmIiorCH3/8gYCAAHh7e6d5301ay+7QoUM6tdl8fX3h5eWFGzdu4O3bt4iPj0fTpk2xfft29OvXD7lz505TZ7ifK2fRokV13uwCiUljTSLVxcVF6atMn3VNWkO0SJEi+PHHH5WHrbNnz6JgwYJo1KjRZ6ukp/cGbN68eXB2dlZuNLZs2QKVSgUnJyfs379fme/3339HvXr10pQI094mkydPRqNGjeDv748DBw4gPj4eZ8+eRdOmTVGkSBFMmzYN69evR61atVC9enW8fPkSXl5emDBhQppjrlixAkOHDsXKlSuVh4WFCxfC0tIS/fv3x61bt3Dr1i34+/tj3LhxuH37NlQqFXbv3q1XTO1t8/DhQ+TMmRNly5ZVbhwjIiIwefJkpRlUStJyXkh6A79y5UqdJF6LFi2QL18+/PLLL7h9+zZev36Nhg0bYvz48fjpp5/S3KGpZhs/f/4cb968URIhUVFRmDVrFry9vfHDDz/ofCcmJkY5VtJCEzMqKirZA19QUBDMzc1TbE6R1gSG9rbduXMnVCqVUvsWSDz+Dh06hG7duqFAgQLIkycPbG1tlZoQablua39nyZIlGDlyJCZPnqysw6JFi6BSqTBkyBAcOnQId+7cgb+/P0aOHInTp09DpVLpHLvpoVarcebMGVSrVg0FCxZU9mVNGSMiIuDj44PixYun6SWW9khl+fLlw/jx43Hv3j3Ex8dj7NixKFiwIIKCgvDy5Utcu3YNQ4YMQY4cOdJd00QT98SJE1i1apVyf9CuXTuYmZnp3AMCiU11ypcvn+5OzydMmAB7e3scPXo0xXNpZGQk/vzzT9SpU0fn/i+9Tp8+DVtbWyxbtgzv3r1Du3btkC1btmTNaQcPHoxSpUopCQB9JV2nLVu2oFSpUgD+b6AQTa2dyMhInVpZ6X3Jotk3r1y5ovQdFR0dDXd39xSboPfp0wc//vhjul++bt26Vemzau3atahevTqyZcum05XA/v370aNHD9ja2uqMxKevpMnNvHnzYujQoYiNjcXHjx/x8OFDnX6zEhISULVq1TT1xaaJde/ePVSrVg329vawtrZOsYuEV69eYdeuXUo/YQULFkxzJ9na+8Hhw4fRqlUr2NnZoUePHsp+OXfuXKhUKtSpUwe1a9dGlSpVUKxYMeW3NETtwiZNmmDKlCl4/PgxcufOjR49euicr9auXZvuGEBiWTW/2du3b5X1X7t2LTJmzIhhw4Yp66OdBHV0dEzTcbpr1y7kzp1bebF769YtHDlyBC4uLqhWrZoS/8GDBwgNDYWFhQUCAwPh5+eHggULso8pPTAp9T9q3bp16NChQ7Ib2FGjRqFMmTIICgpSmrBpX6TTe8G+ffs28ufPr1QB/euvv5AjR45k/Xu0bdsWzs7Oaeo8UPsiovn/jx8/Infu3AgKClI+Gz16NKpXr44MGTKgQoUKqF+/vsFOsGFhYahUqRKaN2+uvF3VNKcoWrQoGjZsmOLNc3riTpw4EcHBwRg4cKAyTa1WY+bMmVCpVJgxY0aK39M3Zko3Mo8ePcK0adOQIUMGnYvx524+0rof3b17F35+fsiWLRuGDx+u89nFixfRqVMn5M+fP1nH1GlNMGq+t3HjRuTPnx8uLi5wdHREhw4dlCY4msRUet6iANCp+aTRp08f5U2RZptpb/+TJ0+iTZs2OvtuepKaQUFBcHR0hL29PUqUKIGJEycCSGySWKFCBdjb28PHxweenp5wd3cHkPhm1NPTU+9jNWlCISIiQvl74cKFKFWqlE5fVrGxsWjdujWOHTsGb29vnWYe+q7n4sWLMWjQIOTIkQP29vYYN26c8sB99uxZFC5cGE2bNlWaexjK69evMWTIEGX0za1btyJ79uyYN28emjVrhly5ciXrNwfQ7+FBe97p06fD2toaw4cPR6lSpeDh4YHZs2fj06dPuHr1KkJDQ5EjRw4UK1YM1atXV/ahcuXK4aeffkp1TO1tO2TIENjZ2aFs2bIoUKAA6tevrzwUrFmzBvb29siVKxecnZ1RokQJxMTE4NatW8ifP3+am+uMHDkSTZo0gY+PD1QqFYoXL66TmJoyZQpsbW2TNeVLC+11HThwIKysrODl5QVzc3N07dpV+axDhw7w9vaGjY0NChUqhIIFCwJIrJFXoEABvZtgaeJu2bIFJUqUQOHCheHi4oLZs2cjMjISHz58wMyZM+Ht7W2w/rK0a/VWr14d+fLlQ6NGjTBz5kxlHk1iyhAPDNr77pIlS/DTTz9BpVLBzc1NJzGlER4ejqVLl8La2hqDBg1Kd8yQkBDkzJkTFStWRKFChVC4cGHlPmj58uVwdXWFk5MTXFxcULx4cXz8+BFPnz5FkSJF0vw2W3t/0j53X7lyBUWKFEHJkiWVmo7aScn0jPJ64MABZM2aFQsWLNBJWMbFxWHQoEEoVaoUMmXKBB8fH3h5eaXroV673Bs2bEDOnDkRGhqqNDfavn07qlSpgkqVKuHPP//Erl27EBQUBCsrq3Q333vx4gUqV66sNP+5f/8+9uzZg86dOyvXln379qF9+/bpuoYmdevWLUyePFmnb6yrV6+iWLFi8PPzw8yZM7F582b07NkTVlZWBhmgZP78+Thw4ACOHz+OBg0aYNGiRToJKSAxUdOhQwedc09aElOa73z69AlPnjxBrly50KlTJ+VBPywsDIULF0aTJk3w6NEjnDx5UrnWpLXmm0ZUVBRq1qypvJR8+PAh3NzckvV/NmXKFPj7+6c5mZp0u8ycORN2dnY4e/ascq+jfey+f/8ex48fR0BAQJqSmxUrVtTphyskJESpuaNJjmvu1VNKRPr6+iq17dJ6vztgwACUKlUKXbp0QcWKFeHg4IBOnTop92ZHjhxBYGAgAgMDMWfOHINUVDh//rzSJcPAgQPRrFkzuLq6KrVE1Wo13r9/j65du2LcuHHpTmhql/XIkSMoVKgQjh07pmzTpUuXKs8xSRNTSZvkp9bu3btRoEABHDp0CD169FBqSp86dQpubm6oXLmyEv/p06eYO3cuypUrhzZt2hillce3jEmp/0EJCQlo3bo1smfPjvLlyyf7fNSoUShfvjy6deuWrjesKTly5AiKFi0K4P+a42i3rdfu+Dstb8j+6cCdN28eqlatiitXrijTIiMjcfXqVbx48SLdNWo0YmJiMHbsWHh4eCjrqvHx40f8+uuv8PHxSdZ5anpj9u7dGyqVCgEBAck+nzVrFjJlyqTTR0VaJE0kaN/cREdHY8KECciWLZtOrYSk21OfC2ZK8+7evRt16tSBo6Njsv6FLl26pHRAnhYpDbt9+PBhZMmSBTNnzsTly5cxf/581K1bF5UrV1binzp1CiqVCh07dkzTDUFQUFCyfl8SEhJQqVIlnTfImmXHxMTgr7/+QlxcHG7duqVzk5haCQkJOmW9evWq0hHzsWPH8OOPP8LFxUUnybho0SJMnToV06dPV2L16NED1atXT/MFe+jQofDx8YGdnR1GjBiBO3fu4MOHD/jxxx9RpEgRVK5cGcOHD0fZsmVRokQJxMXFoXnz5mnuc2nUqFGwtrbGr7/+im3btik1hkaPHq3UPDl79ixsbGzSncRIaV84cuQIHjx4gGvXrsHDwwNz584FkNiviEqlgkqlMkifa9euXUP37t11moX06tULXl5emDlzpvKg+/LlS52mZCEhIcibN2+qm55qJ7UvXryIdu3aKcfFli1b4O/vj6pVqyoP7S9evMC+fftw5MgRnQ5Mvb2903TOnzlzJrJnz47Dhw/j+vXr2LJlCzw9PeHl5aWTmBoxYgRq165tsKbZERERqFChAi5evIjHjx9j+/btsLKyQps2bZR5Tp06hXXr1mHjxo3KdurTpw9KliyZ6ppE2jH37NkDCwsLTJs2Db/99hvGjh2LrFmzIjAwENHR0Xj37h1mzZqFPHnypGnQA+1OXzV27twJc3NzjBgxAosXL0bLli1RqlQpncTX4MGDoVKpDDYS3tChQ+Hg4IClS5di3LhxqFmzJmxtbXHgwAGlnNpWrVqFIkWKpCtR8+LFC3Tp0gUXL17Ep0+fcObMGVSoUAF58uRRao7fvHkT586dw+HDh3X6S/Pw8EjTvqtZjz179qBPnz6oXbs2fvrpJyUJdPXq1c8mplJLu3mV5vf9/vvvdRKowP/VbI6Pj8eLFy+wbds2XL16VedlQXqcOHECNjY2WLRoUbIXYevXr0ezZs1gbm6OokWLonLlygZJ1MTFxaFGjRro2LEjtm3bhsaNG6NChQoICAhAtmzZlJeUly5dStM1NCm1Wo2XL18iT548sLS0TLaNz549i3bt2iF//vwoXrw46tatm+a+gLTvUebOnQt7e3tcvHgRV69eReHChaFSqTB58mRlng8fPqBevXpo165dulsBJP3+ihUr4Orqip49e+L+/fuIi4vDxo0b4enpCRsbG+TPnx9eXl4GGeTh+fPnSof/L168UGrUaKxatQrR0dF4//59mvtAS1rrOy4uDm3atFHua1NKDu3YsQNNmjRBrVq10vRye9OmTTrNgy9evIh9+/ahZs2acHFxUV5afi4pU6dOnXQNkLJr1y7Y29sr3SYAiS+6y5Qpg86dOys1hJIeH2l9kZ6QkIDXr1+jYMGCyn568eJF5MiRA66ursr5ND4+HkOHDoWLi4vBB3mIj49H/vz5UaxYMZw8eTJZYmrs2LEGq6XUuHFjODs7w8LCQmkynZCQgJMnTyZLTAGJ9/iGeib9L2FS6n9ASoma2NhY9O/fH25ubpg4cWKy0ZaCgoLS3bdSSs6ePYtatWrh5MmTcHFxQY8ePZSD/vz58+jdu3eahpDt0KGDzgVv8uTJaN++PU6fPq0c0Jr+CxYvXvzZ5aTnrZG2ly9fYvbs2bC3t082wsrHjx+xdOlSdOjQIc3Z75S+9+bNGwwfPhwZMmRI8a31uHHjUKlSpXTXGgISR9MqUqQIHB0dkT9/fixcuBCvXr1CTEwMJk6cCGtra6WWTVppr+Pr1691HjhOnjwJf39/+Pr6JnuAv337dpq3a0odWQ8dOhRNmjTRmbZ37174+fnp9A1x9uzZNPfzERERoSxHu2+S8ePHo3Tp0jhy5IjO/Ddv3kRAQIDOG2x91jnpPrBkyRK0atVKp/3+06dPMXHiROTJkydZrTQA+Pvvv9GrVy/Y2tqm+sZarVbrlHP58uXInTs3VqxYgbFjxyJv3rxo27Yt/vrrL8TGxmLXrl1o2LAh6tWrh/bt2ys3bc2aNUO/fv2SJdaS0i6XWq3G8+fPUaxYMcybN09nvt69eyNPnjwYN26csv3/+uuvdN2QaJdrw4YNyfpoWr9+PSpUqKDc7O3btw+BgYEYP3683jch48aNw40bN5S/165di1y5ciF//vzKDZBG79694e3tjRkzZugM6BAeHo5evXrB0dExVQ8PSTs3Xbt2LSpUqICaNWvq1JrbsWOH0vdEeHi4zneuXr2Krl27IkeOHKmqjaFpmqsRHx+Pzp0763TMrlarcfbsWbi7u8PX11d5MHn58mWykVhTK2mCbsKECQgICECHDh10HmD27t0La2trtG3bNtkyjh49im7dusHOzi5VD9wpNdno0qUL2rVrpzNt9erVyJw5s1Ij4uXLl5g3b16aRv/Ubp6nGX2zRYsWCAkJUaZHRUVhxowZKFmypE4tjB9//DFd/XxoPHz4EO7u7jp9Tb59+xYtWrSAnZ1dirUXNc1uUzsSaNJO9ZcuXQoHBwdUrVpVJ7l0+fJlVKhQAS4uLskGPzl37hzatGmDnDlz6lWTKOm+t3nzZlhYWKB9+/Zo1aoV8ubNi3r16inNrK5cuYLixYvDzc1N78T/tGnT0L1792QP2f7+/kpN06TXjfT0VZUSzfpqaq5or3/SB+zr16/jzZs3aUomfO76N2vWLFSsWBEWFhYYMmSIUhM1ODg42ahlhqqNsG/fPri5uaFEiRLJzr+xsbGIjIzEu3fv0tTkPalz584hNDQUq1evVqbt2LEDZmZm6NatG5YtW4Zt27ahZs2aBumeQvO9I0eOYO7cuco18rffflM6cNecL9VqNQ4ePIgrV64oid20xtNO2DRo0ACjRo1C3rx50bNnT2U/ev78ORo3bpyuWptdunRR+qjTxP7w4QMKFSqkDPiS9LOIiAjEx8fjxIkTaUpuav8W48aN0znf/v3336hatSpcXFzw+PFjZfq8efMQERGhxOvcuTM6duyY5ppEGzZsQK5cuXRq7KvVagwbNgyZM2dGt27ddAZ7MNSz4dixY+Hk5KScuw8cOIDMmTOjWrVqqFmzJpo3bw5bW1uDj1qr3c1G0aJF4enpqZOYCgsLS5bYTQvN8REYGAiVSgV3d3ccPHhQ6UpGrVYrgwNUq1YtXS/xiUmpr572RfbMmTM4ffq08mAQFxeHnj17okyZMpg6dWqyC2RKtUb+jfbJKqWD6c6dO8iTJw9UKpXO2w0g8aDV9Gmij4sXLyI4OFjnZLxq1Sp4eHigXLlyqFevnnKzPH/+fLi4uBhstDDtbRMeHo7du3fj1KlTUKvViIuLw6xZs1C0aNFkzSS1y6rvjZD2/Ddu3MDx48fx9OlT5WTWv39/ZMyYMcURMdL6UKZt0qRJyJkzJ9avX49jx46hd+/eKFKkCEaOHImoqCi8efMGU6ZMgUqlUpop6Uu7fKNHj0aFChXg4OCAgIAApf+SQ4cOoWHDhvD19U2x6YS+21XTLEa71hyQWIujbNmyyY6PadOmIVeuXOnqsDjpxX316tXImDGj8mBw8uRJFClSBN99953Sieb9+/fRsGFDVKpUKU1Jk7Zt2yqdcCYkJODFixfo3r077O3tk/V3ERERgYkTJ8LV1RWBgYHK9FevXmHVqlWoVKlSmt9onzhxAgMHDtR5+NyxYwe8vLzw3Xff6TTd0Gyj+Ph4DBw4EDlz5vzXh6cBAwYox512vzglSpTA1KlTAejeOJYrVw758uXDuHHjdGqxpGUba+97Fy5cQJEiRVCrVi2dh+G5c+fCwsICt27dwpMnT9CgQQOd80Rqb2p3796N1q1bJytnq1atYG5unuK5vW/fvnBwcMCvv/6qTHv16hXCwsJS9WA/Z84cNGzYEAkJCcq6zpkzByVKlICDg0OyhMjOnTvRsGFDeHl5KefihIQEHD58GAMHDtSpvfo5ixYtQsmSJZOdu5o2bZpijd+xY8dCpVKhVKlSOqPd6Hvu69mzJ+rXr6/8rVarsXDhQlhZWaFYsWI6o8QBiQ+ktra2qF+/vs5+cOjQIdStWzdVzUkmT56Mxo0b67wsSkhIQP369ZVmDXFxcTo1zQoVKpSmftY05s+fj9q1ayM2Nlan3NWrV0/WVDY6Ohr169c3SAfjSd2+fRvW1tZKH02askRERKBw4cLInz+/8vJAs88vWLAAmTJlStWw7wsWLICPj4+yLyQkJGD79u2oVKkSbG1tkw1aceXKFVSuXBmZMmXS6Tfw5s2b6NevX6r23c95+vQpSpYsidmzZyvTjh8/jmbNmqFevXpKU6ezZ8+ifPnyevcZs2nTJuU8qV3rvXXr1vD19VX+1qzrixcvMHz48HQ310tJSEgIKlSokOL5NDw8XDlG0yLpSLX9+/dHnz59sG7dOgCJ5/2kzWWrVq2q051DWn3uWNu3bx/y5s2L9u3b61zLDJX4UqvVSg1tMzMz/PLLLzqfb9y4EX5+fsiZMycqV66sM+BLWl+2aDfDtLOzQ0hIiM71f+3atcidOzd69uxpkAS19jl10qRJyn4ZHBwMKysr1KlTR2f+IUOGwMvLK8WuEFIb7/Tp08p20vz3w4cP6NSpExo1aoT79+/rfOfs2bNo2LChTo3EtDa3f/jwIZYvXw6VSoWxY8cq0+/cuYNq1arByckJa9euRY0aNVC6dGnlu5cuXYK1tXWajlvNMvbu3Qt3d3eltYpm+tu3b5EvXz6ldqyhWs9otq1m3bTPgVevXsWIESPQpUsXTJs2zSA1pDT70pMnT3D37l2drjY+l5hauXKlQfZjIHG05YsXL6J27dooXLgwduzYoXNfcurUKWTJkgW9e/c2SLz/KialvmLaF8uhQ4eiYMGC8PLygo2NDXr27Il3794hNjYWPXr0QNmyZTF9+vRkb+L0vbnVPPxoDrYjR45g2rRpWLBggXLDuHfvXmTKlAk9e/bE0aNHcfbsWQQFBcHa2jrNVZk15Vy8eLHyJvXDhw9Yv3496tatCwcHB7Rt2xajR49GnTp10pwsSSkmkHgxdHV1hY+PDxwdHdGmTRtcvnxZeatcrFgxg5xskiZLihcvDltbW9SsWRMdOnTA+/fv8fHjRwQHB8PMzCzF5hTpeUP2/v17VKlSJdlQ6uPGjUPevHmVmgxPnjzBqlWr0l3tdNSoUXBwcMC6detw//59eHl5oWjRospD74EDB9C4cWPkzZs33W9479y5o7yJ0r7xWLBgAZydnXH06FGdbXfkyBEULFgw2U2KPrS3z/v37/Ho0SOlM29NjcEDBw6gcuXKyJ8/P3LlyoVixYqhZMmSaWprHh8fj2PHjiV7m3blyhX0798f2bJlS1aLKCIiQqktlrQPhdS+0f7hhx+UETUTEhJw7tw5WFpawsLCQhm5T2PHjh3w9vZGhw4ddGquXbt2DYGBgShUqFCq3podPnxYWU/t0VQ0TS+TdrjfvXt3lCpVCmXKlMGmTZsApP8tVWhoKDp37gxvb29YWFigcuXK2LFjh1KWKlWqIEOGDMifPz+KFi2a5recmn1g69atOh20N23aFF5eXlizZo3yZk5j+vTpyfpMSO36Pnz4UPmudnX/VatWoUSJEmjSpIlOzS0g8QE5JCRE54FIrVbr9TCq+a72dWLTpk3w9vbW6Y8DSLwJ7Nq1K0qVKqWMGpQWUVFRyu+iGcEpJiYGq1atgoWFRYp9GW3fvh21a9dOdmymtmbE33//rRz/2gnS4cOHw97eXtmfNeVasGCBTvItLXbu3KkkJDXl/PjxIzp37gx/f3+8fPlSZ30mT56MEiVKJKtlrY/P7W8VKlRAkyZNdGp1xMbGomHDhsifPz9sbW2V+4no6Gj88ssvqb53iI6OVvYjTYIwNjYW+/btQ5EiRVCqVCmdWhlAYi3unj17JnuY1+f6NmPGjGSDB7x69Qpubm46iXkgMUmTK1cunZEN0/PbHj16FN99951ybrh27RpsbW11mpoCifcxhQsXTnOn2/9kxowZsLa2TnadjomJQd++fQ3S9DMkJAROTk4IDAxEz549YWNjozOa3vv373Hy5Mlkg9qklWb/DQ8Px5IlSzBx4kTcvn1b2X927dqFfPnyJUtMGdLSpUuhUqnQpUuXZLX5IiMj8eTJE7x9+9ZgTYEOHz6M7Nmzf7bFwfr16+Hq6or27dsbJJmwYcMGZMmSBaNGjVISwJGRkfD390eJEiXQr18/zJ07F507d05zYgZIfi5avHgx3NzclJeOW7ZsgaWlJYKDg5Vz84sXL9CoUSPUrFkz3cnGwYMHKy8iwsLCkvXPGhERgRYtWsDb2xv16tVTzv2acqf2Zf7nypmQkAAfHx+UL19ep1XC7du30aJFCwwaNAiFChVK90hwmubu2rp164bixYvrTDNkDSHt/hiLFCkCDw8P2NvbY9GiRcr9e3x8PIoVK4aiRYt+dlCE1Er6Xe1jTq1Wo3r16skSUwkJCbh27Ro7NU8nJqX+B0ybNg05c+ZUakiNGDECKpVK+Ts2Nhbff/89XF1dUxxFJ7VWrFgBJycnpQ+C3377DdmyZYOPjw88PDyQP39+5WS+fv16uLi4wNnZGUWKFIGvr2+aLibaB/CrV69QrVo1eHl5Javiv3LlSvTu3RtZs2aFSqVK1qQuPebOnQsnJydlqNuhQ4ciS5YsSv8Xb9++xaxZs+Dg4JAsmZNWU6ZMQc6cOXHw4EF8+vQJXbp0QdasWZW3HFFRUQgODk42clF6RUdHo2TJksp6aN+816lTJ9mbKyBtN0FqtRqPHz9G6dKllU7L//zzT2TJkgU///yzzry7du3C4MGDDdbU6tq1a8ifP79SmwYAatSoATc3N/z5559KIiYwMFCnQ2V97du3T+lMukePHmjZsiXi4+Px8OFD1K1bF/b29srxcvv2bZw4cQKzZs3C1q1blXVNzw3mvHnzULRoUeUC+tdff6F///4oXLiwTrMcIPHBOC01J4HEG7cBAwYkS7isXr0a9vb2aNGiRbIExh9//AF7e/tkfaAdP378X2tDJL2ZWbNmDcqVK6ecE+7evQt7e3s0b94ckZGRSrlatWqF3bt3w8/PD1WrVtVrHVMyb948WFlZITw8HI8ePcKRI0dQsmRJ1K1bV6cZ2urVq3X6HNLnN9V+UL19+7byAKTdpLVhw4YoWrRoiokpIH0DHezZswd2dnY6gygsWbIEVatWRYsWLT77UJKeY/XAgQNQqVTKsMkRERFo164datSogZkzZ+LTp0+IiIhAgwYNMGLECISFhcHNzS1NzcK1y7lixQpYW1srD0afPn1CWFgYMmXKpNOhcVL6Hi9JO2KtWbMm9uzZAyAxWV6jRg1UrFhR5818YGAgqlWrlq4EkcaJEydQoUIF5Zg8c+YMLC0t0bt3b52H3i5duqBx48ZpTpZob5d3797pDNm+evVqlCpVSqd2ZlxcHFq0aIGjR4+iXLlyOrUDU7ONkzYd3r9/P1QqFVauXKksf+/evfDx8UG5cuWSJaY00nLOjY6ORmhoaLLz3P3791G4cGHMmjVLKYNG3bp10bZtW4M0t9+yZQsKFSqETp06KeeG9evXw8HBAcWKFUOTJk3QqFEj5MiRI93NZDRx//rrL1y8eFHnuCtfvjwKFSqEK1euKC/QQkNDkSdPnnTXXtc0mdPc165btw5ZsmTBkiVLlHm2bt2KFi1awN/f32C1hjZu3AgbGxvUrVsXrq6uqFSpEubPn6+84N21axcKFCiAxo0bp2sEw3/axzUDAowfP17nRVHSfSc9D/qa+MOHD1f6c3zz5g327NmDjh07olatWso98PLly+Hl5ZXukROvXLkCFxcXnd9Q482bNxg0aBCqVq0KX19ffPfdd+navkn3gyNHjsDHxwe+vr5K7aBVq1Yhd+7cKFmyJIoVKwZfX1+dUTDT2oWC5t5AM3gOoNvhtva89+7d00kwJq2p+0+0y7dt2zZMmzYNq1evVp69nj17Bjc3N5QqVQrz5s3Dtm3bUKtWLaVGbI4cOfQelVfbgwcPULlyZWTPnh2LFi1SXmi9fv0aHh4eGDdunDKvIVp1aNu5cyesra0xbdo0vHz5EkFBQciZMydGjRqlnHvi4+Ph4uKCsmXLpnivlBra23j27Nno1KkTKlSogJ9//lnnGbd69erw9PTEzp07k11rmJhKOyal/gd89913Su2H9evXw8bGRhn9TnPh/PjxIyZNmpSug+HPP/9E+fLlUbRoUTx8+BAhISFYtmwZ4uPjcebMGQQEBMDGxkZ5U/bo0SNcvnwZN27cSNPw0Y8fP1ZOWD/99BOioqJw7NgxtGrVCsWLF0/WP5Cmau6gQYMM2nFcx44dlTcaGzZsgLW1NRYsWAAg8Y1zfHw83r59i7Vr16b7ZKNWqxEVFYUGDRpg6dKlABIf4LNly6Yka2JiYhAfH48PHz7ojJChr89dYBs3bgwfHx/lb80FOTg4GM2bN09TrJQ8efJEeZu5bds2ZMuWTdmu0dHRWL58ebJ+CvTZvtptyjVevXqFqKgo/PDDD0qH0Bp+fn7InTs3ihQpgpo1a8LGxibNN/AxMTFo0aIFypYti9q1aycbcvvBgwdKYupzNcDSO2rirl27ULBgQVSvXl357OrVq0piKqU3ofreICSdPywsTGdUt7CwMDg7O2PAgAHJmo2Fh4fr9dCpkXTe9evXw8/PDwEBAco54ciRI3B0dISXlxf8/PxQqlQpFChQAEDiG31fX990j/LStWvXZB3uh4eHw83NDRUqVEjWPxKg32+q3W/Thg0b8OnTJ6xZswZlypRBp06ddAYB0ByzS5YsSVeNC+2bp/v37+PNmzfo378/PD09lQdrIDExVa1aNbRq1Srd1d9T+u0HDx4MS0tLJTF1//59dO/eHR4eHrC2toaHhwc8PT0BJL7Zd3V1TVMfSxqvX7/G69evUb58eRQsWFBpVqVJTJmbm2Po0KFpXr72Omr2gejoaGVkqYCAAKVfuf3796NGjRrIkSOH0swre/bsejej/dzDzKFDh1CuXDlUq1ZNOff88ccfsLS0hJ+fH1q0aIEOHTogW7Zsaa79kbR5dtWqVWFra4sOHTrgt99+A5BYk8/b2xs+Pj4YMGCA8gD46dMndOjQIVlT43+jXQv84cOHiImJQUhICMzNzZWaSprEVIkSJVChQoU0P5ikRLO9jx49ih9//FGZPnLkSFhYWCR7kVa3bl2MGDEiXTEPHjyobM9ff/0Vvr6+aNeunVKr7MGDB+jTpw+6dOmCgQMHGqw/qfXr18PZ2RmOjo7w9fVVOoh+8uQJqlatChsbG3h5eaFy5cpwcHAwSH8xy5YtQ8WKFQEkJoqyZ8+uvFyJiorC8ePHoVarcebMGYN0ag4knlucnJyUe7E7d+7AzMwMPj4+mDFjhlLjcNu2bShWrFiyGiKppX1+2LJlC5YsWYKlS5fqJKBmzZoFlUqFCRMmpLmD75QkTQ5MmTIFDg4OWL9+PRo1aoR69eqhfv368Pf3h52dnVKzKC3dGiQ9F23duhVFihRJ1ll/Uh8/fkzXb3nw4EGlaX2XLl2UZPihQ4fg6+sLHx8fJTEVHh6OVatWYfDgwViyZEm6R6BbsmSJzsAD2r/10qVLkTFjRowdOzbZ/Yi+Lzu0t9ugQYOQJ08eVKhQAZUqVUKlSpWU7iHevn2L+vXro1ixYnB1dUWNGjWUc2fp0qXTPcrq7du3MX78eJQsWRJeXl4YMGAArl+/jgEDBqBjx47p6g7jc54/fw5/f3/lPPT48WMUKFAAJUqUgJWVFYYNG6YkphISEtJ1r6AxaNAg2NnZISgoCK1bt4a7uzuaNWumVFYAgFq1asHW1landjulD5NSXzG1Wo3o6Gjkz58fW7ZswbFjx3Qe7GNjYzFw4ECdgwRIX5b22LFjqFixIgoUKIAaNWroZIZv3boFf3//FKtw60tThTg8PBz9+vWDhYWFclI5cuQImjdvjuLFiys38mq1Ol1V71MSHx+P+Ph4+Pn5YceOHTh58qTOELxxcXGYOXMmtm/fnux76fHp0ydUr14dR48exe+//57sN/355591RtzSfEcf2he869ev486dO0oNlb///hsuLi6oU6cO4uPjERcXB7VajcqVK6e5BlpKNxpRUVFwd3dHu3btYG1trVN759q1a6hevbpyIU2rv/76S0mSaDrqjIqKwu3btxEUFIRChQrpPGyvWrUKU6ZMwbRp0/Qe0l1De9uWKFECKpVKGZ5a28OHD1GvXj04OzunexjlP//8UzkWunbtqrx927Vrl/JwoJ2YGjBgAGxsbJRaammlva/HxsaiVq1aKF++vE7/F0uWLEHu3LlTTEwlXca/0d622iN57tixQ6nJp3mb+/r1awwbNgz9+/dHaGiocox89913aNq0aZqTUpry9u7dG3Xr1gWge/5ZsmQJsmTJgsaNGyv95uhr//79cHR0RFxcHIKCgpA3b17lrbSmlknSxFSlSpXQvn37NMUDEo8PTe3Bfv36oVChQgDw2WNl6dKl8PLySrGT/NTS/j03b96s1BgCgGHDhun0pfLu3TvcvXsXCxcu1KlN2L9/f1SqVEmvFx979+7F9OnTASSOWNipUyclRuXKleHu7q6TmNL0A6I5D6fFzZs3sXnzZgCJtTw0b6dv3bqFokWLolatWsrNq2YQgs6dO2PgwIFpqgUGJNYa1Owj69atUzp+/v3331GrVi1UrFhRqd1z/vx5DBgwAE2aNEGPHj3S1JdS0vP8yJEjYWtri8WLF2Pu3Llo0KABfHx8lHP94cOH0aFDBzRu3BjdunVTkqKtW7dGz5498enTp1Qlynfv3o2QkBCo1Wr88MMPKFq0KGJiYhAVFYUhQ4YgQ4YMOompffv2wdnZOVlfWmlZ16T9mIWEhKBIkSI6TXM6deqETJkyYfz48fjpp5+UPnPS+rtqtGrVCvnz51f+Xrt2LUqVKqUzQmbS8qaV5vsRERHw9vbGL7/8gr1792LYsGFwdXXVSdqGhYVhxowZWLBggd79ZH0u7tatW/Hdd99h7dq1OvdhQGJSNWlNv/Q2t4qPj8esWbPQv39/AIn3Rfnz50fHjh3RvHlzODs7Y86cOUrtxbTWYtT+XQYPHgxHR0dUrVoV1tbWaNCggc693qxZs5AxY0aEhoYapNakRnh4OH7++WfExsbi+vXr6NChA3LkyIGOHTsq17CLFy+iRIkSStOvtOxPmu9oErRLly6Fk5OT8rn2fezp06fTPUKjpksKb29vVKtWDS1atICNjY3y3JKQkICDBw8qianPJUz0uUdJmuRr27YtVCoVfHx8lEFWtLedpsPtpH2GpdWsWbOQN29e5VoydepUmJubo3Dhwsr9XkJCAp49e6ZTK3348OHInTu3XserZj2io6OTNS+8dOkS1qxZg9y5cytJMJVKleLLuvR68+YNVqxYgUePHuH58+coUqSI0jdj7969YW9vj0GDBhmsr+HTp0/Dzc1N5x5027ZtqFu3Lr777judPs/69evHmlEGxKTUV+RzF9kRI0agbNmysLCw0DmxvXz5EjVr1tR5kEhLvKQXn4sXL6JevXowMzNTbtw18966dQsNGzaESqVKdza6fv36sLGxQbZs2ZK1c9Ykpnx8fJQTQ3pvuj63fQcPHowcOXLAwsJCp2+IN2/eoHr16pgyZYpBY8bExKBWrVqoUKECcuTIofMgdP/+fdSqVUunLwp9Jb2BLlCgAGxsbFC+fHnlTcOBAwfg6uqKfPnyoXr16ihdujQ8PT3TNLKL9jpGREToPGgsWLAAtra2ylC3arUaHz9+REBAAGrXrp3uk/ns2bOhUqnQsWNHZMyYUal5ASTeZAYHB6NQoUI6zZMM5fz582jbti38/f1RuXJl/PTTT8n6+Hn48CF8fX11OlrWh1qtxps3b+Du7g5/f3+0adMGVlZWypvpT58+4Y8//kiWmLpw4QJmzZqVru2rnXieNWsWzpw5g6dPn6J58+aoUqWKTpX8pUuXIm/evOjSpUuqOitOifZ+NHz4cOTPn1+nOfL27duVxJRmBCZtjx49QmBgIOzs7PR64P7ceWHjxo1QqVRKZ7saK1euREBAAHx9fdG5c+dUx9F29+5dpZaBtbV1snOpJjHVuXNnnaZ86XkQmzhxIlQqFapVq4YcOXLo9OGjfaxoX09+//33dDePARLfOubLlw+//PKLzhD1oaGhMDMzS/F8d/r0afTv3x9WVlZ6Pby8f/8eXbt2RenSpeHn5wcrKyud/eHt27cpJqZ27NiR5hcdcXFxGDJkCFQqFQYOHAiVSqWzTtqJqZRGCE0LzYsEFxcXTJgwARkzZlRqfACJN9F+fn6oWLGicixratmlZT2TNpfSnNu0B+S4e/cuBg8ejBIlSujc0GvExMQgODgYdnZ2eiVsQkNDUbRoUZQrVy7Zd7UTU5oRzGJjY3H69Ol0X1+eP3+uJNJ+//13bNq0CW/fvkVISAjKlCmjk5gaN24cfH19lQfk9HQ2rjl2bt++jaJFi+okaH777Tf4+vqiU6dOOm/oDdFM5vjx4+jXrx+6d++u7CvPnz/H1KlTkTdvXp1RxdLqc+ewM2fOwNraGiqVSqc27ocPH1C3bl107tzZYIk3zX5x584dXLt2DdHR0ahSpYoygMjLly9hZ2cHDw8PzJkzxyCjlc2YMQN58uRRzucrVqyASqVKNoDGuHHjUKFCBYM1e1Kr1WjWrBkKFy6MFStWKNtfu98hABg4cCBKly6d5u4MNPbt2weVSoXdu3fj3r17sLW1TdY8OiEhAX369MHs2bMN8kAfHR2N3LlzI2PGjMlqiCckJODQoUMoU6aMTlO+9NJu2h4SEgI7OztMnTo1xZcn27dvN0iLh48fP+q0nPn9999hZWWFwYMHw9/fHwULFsTu3bt1vn/t2jW0aNEi1aPyamj2v99//x1169aFu7s7unbtmizp9PLlS/z0009o2rQpVCqVwToWT0rz0m78+PGoVauWkgCcMGECcufOjeLFi+s0IddH0nPSuXPn4OjomCzxv3HjRuTIkSPZdIBN9gyFSamvRNIR2bRvonfu3InixYujatWqyoXk2bNn8Pf3/+xoKKl1//595SS2YsUKfPfddwASaymULVsW7u7uytsp7b4GWrZsmebaUpqTs6a6sp2dHf78889kzVKOHDmCli1bIleuXOnuZFJ7+546dQonTpxQms/cv38f9erVQ/78+ZWhYSMiIlC3bl2ULVs2zdtXO+aVK1fw9OlT5W3DpUuX4OzsjAoVKgBIvFl//fq1kuAwRMz169cjd+7c2LlzJzZs2IAxY8bA0tISQ4YMAZBYa2DUqFEYPnw4JkyYkO5qzCNHjkSZMmVQrFgxhIWF4fnz53j79i0CAwNhZWWF7777Dt27d0f16tXh7e2dpnb8KWnbti0yZsyY4khSmodtLy8vTJo0KV1xtM2dOxd9+vQBkHhD1KZNG5QvXx7z5s3T2X7v3r3Dq1ev0r2OT58+hZOTU4oP8JrElOZhKGmstOxL165dg0qlwqJFixASEoIcOXIoD4KPHz9GkyZNkiWm5syZg0aNGqV7XYcNGwYHBwccPHhQJ4EBJDZZrFOnDvz9/XVqKT19+hSzZs2Ct7e3Xg+D2mVdt24dZsyYgSFDhijn2eHDh8Pc3By//PILbt++jVevXqFBgwZYvHgxtm7dCpVKlebRuzTJC2dnZ+VBQLt2l6YpX8OGDXUewvXZvoGBgTr9XFSoUAEZMmRAcHBwsnn//vtvDBw4EJ6enjojBwHpu+GaPHkyHB0dcezYsRQftDRN+ZL2g7Zy5Uo0bdo0TYNnvH79GiVLloRKpdLpyFyzHm/fvkWVKlVQsGDBZAmvtJ7/3rx5g9q1a0OlUinnhoSEBOU31SSmAgIC0l1DVJubmxsyZsyIkSNHJvtMU2NKuykfoH8CIyQkBDVr1tRpDvfixQvkyZMnWR+Bmn6Wkva/ePPmTeVcnJqHo+HDh+u8JKpZsyZUKhW6du2arBZJVFQUQkNDkSlTpmTlSeu+GxkZCUdHRwwaNAirV69GhgwZlAS1pk+T0qVLJ+vMODo62iBNWBISEhAZGYnWrVujRYsWOp9t2LAB7u7u+P777z/bd5a+Pnz4gKCgINjZ2aFcuXI6n2kSU+7u7ujbt2+aY2jvdz///DOGDx+OiRMnKvdF69evVxK727Ztw759++Dn56fTqXl6++g6dOgQfvnlF52XJ6dPn4aXl5fycvTSpUuoW7cuunbtmq6BUDRev36Nvn37Kknj/8feW8ZVlb7fw59tAtKldHd3p3QKKgoWglgYo4KIMYrY3V3YCqiggt2NioUCCigqKooS0rGeFzz7/p7NgRk55zgz/v6uNzMe9jn3jnvfsa51rSslJQWioqJITEyEqqoqbGxsGGQCN348HaXHhYaGwszMDDt37mS8x7dv38b48eMhJibGtXKpsLAQ69evJ8VP6urqsGTJEqiqqmLq1KmoqalBbm4uZs+eDXFxca6UhKz2De/evYOZmRmpktuWmKGJKXl5eY4DSaw4dOgQrK2tSUEVoLXKq6qqKjZu3Ejm87bPorNzC+v3Dx06hLdv36KgoAAFBQV49uwZlJWVyb3etm0bunbtCjExMUbQrrKyEklJSWx+eD8C2nZj5syZOHHiBKysrGBvb99hoam2Rv2cgJ4vHz16hIsXL7KlRU+ZMgW+vr4kxTU2NhbHjx8nJBU3iI+PR1JSEq5duwZpaWlCwLGuy9TU1Bi2IL/BW/wmpf5jmD59OuTk5CAuLg5PT0+SDrNjxw5YWlpCXl4eVlZWMDMzY/imcLLwampqgre3N0xNTTFz5kx07dqVsTG4desW7O3toaurS7x/6EGSk9SYtgN0QUEB3r17h379+pEBoO3v3rt3j2sTbFbExMRAXl4ePXr0gK+vL5G7njt3Dg4ODujVqxeMjIxgamoKS0tLrs00gdaKOPLy8lBSUsKQIUOIOWBycjJ69uwJc3NzWFpawt7eHsbGxjxp88KFCxg1ahQWL15MPqN9nISEhNgW7jQ4bXPv3r2QkZHBzp07MXDgQOjq6mLatGn4/Pkzvn//jqNHj8LNzQ0jRozAn3/+yTUBxtqXIiMjERQUBIqisHz5crZI2KtXrzBmzBiYmZlx5H3WHg4fPozu3bszjB7DwsLg4OCA1atXo7y8HE5OToz0EU7JmoaGBuTk5MDQ0BCqqqoIDAxkUwo1NDTgzJkzEBcXx/jx4wFwFzmvr68nZdpFRESILJrumzQx5eTkxFBvcmqmTqOwsBDGxsbIyMgA0OoRlpOTg4ULF5J7fe7cOZibm7OVA//8+TPHkbLY2FgoKirC398fnp6e6NGjB44dO4aqqiokJiZCQEAAioqKUFRUhK6uLurq6pCdnQ11dXW2iHNHaLvRyM7Oxvnz5+Hi4gJFRUUiCWfdZB46dAjh4eEc3c/i4mL079+f8Y5NmDABEydOJO8KvXmmz6mgoACRkZEYNGgQTyL1lZWVcHV1Jeqr169fIzMzE8OGDcP48ePJuUVHR8PR0ZHt+6y+Wz+KpqYmvH//HuHh4RgwYADs7OwYSkm6D5eXl0NXV5dnPno1NTUYMGAASc2hCYzm5mYScHn58iUUFBQQFBT0w5X8OkJTUxMaGxshLy8PWVlZGBgY4M6dO2x95eTJkzAzM2NUfOoMGhsbsW7dOlhaWmLQoEFkQ/vx40fY2Nhg6tSpqKurY/SXoKAgojphxcOHD3+oMlx+fj5cXFzg7OxM7uP06dMxduxYmJubY8aMGSRyTl8v7SVob2/f6WvsCOfPnydVRuk5k26PJqYsLS2RkJDAk/YePXrEKK0OtK6BunfvzlCkAa3eRNymzgHMeSIvLw+xsbHg4+Nj23h9/vwZCQkJMDAw4Gjzydovp0+fDklJSdjb20NbWxuampqkX+zevRtaWlqQlpaGlZUVAgICeLImAlrJIGFhYcycOZOhdLl69SpUVVVx5MgR1NTUYN68eQgLC+No/GkPDQ0NuHr1Kr58+YLHjx9DTU2NjIkpKSno0aMHrK2tcefOHQDsKaN/h/bmh8+fP7OpbAYOHAgLCwvs2rUL9fX1eP36NWbMmAEXFxeOK2fTyMvLg56eHmRkZBgK55KSEmzatAnS0tKQlpaGuro61NTUuPIhY72u8+fPkzVfWVkZzMzM4OLignPnzrHdwxcvXvBkL3H58mXic8lqkTBmzBioq6tj8+bNXJMkrNdIq4FYn9HmzZvh4uJC/KJSU1PRr18/rFu3jifXWFBQAENDQ6xfvx5A67qkT58+UFJSgoWFBeMZc2ulsmrVKowePZr8+/DhwxATE4OCggIUFBQY6+jFixdDTEwMY8aMwcCBA9GrVy+OBRKs9/js2bMQFBQkKqghQ4agT58+jN/+/Pkz9PT0uPbl+o2O8ZuU+pfBOmiePXsWWlpaSEtLw9mzZ6GjowM9PT0SvcjOzsbOnTuRmJiIgwcP8qSCFwDo6+uDoqh2o+c3b96Eg4MDDA0NuarEwfryNzc3s0U6fXx8IC0tjXPnzpHrmjlzJmNRwMlAy3p/b9++DUNDQ1y/fh3Xrl2Dm5sbHB0dyQBDl3LdtGkTx9W02uLChQtQV1fHxYsXsWLFCgQGBsLMzIxssF+9eoWEhATMmzcPu3bt4kmbz58/h4aGBgQFBdnKnVdVVSE0NBQRERFobm7mmDxo+73t27cTSTHQqo6gDW5pk8u2CwRu04KuX79OTGDpNttutoHWiaSmpoZNddPZ9uj/b25uRllZGfz8/DB//nxyHd++fcPIkSOhq6sLRUVFmJiY8KSyFStevXoFXV1d+Pj4tJvC9vDhQ54RuAcPHgRFUaAoikFW033z/fv36N+/P7S0tHDy5EkAnV9Mt0VOTg6EhIRw7do13L17F2PGjIGBgQF69+4NJSUl4p93/fr1TlWt+SscOnQIMjIyRGFFV4ej/YEA4O7duyR9h76/06ZNg7Gx8Q+VcmZ9np8+fUJhYSHpG+/evYOdnR0UFRUZG/YtW7YwItqdeVfpBTH9nX379pGqVkDrIpd+V1jHWPq8eHVv6VTdkSNHYs+ePQgICICzszO8vLygoaHBIIQ68vD5EXR0b96/f4/Ro0fDysqKLYX3y5cvqKqq4tn70tLSgrq6Orx//x4TJ06EsLAwIVRYr+39+/dcpb7Tv/X48WNGfzE0NISurm67xNStW7d+mDxtD3V1ddi1axcsLCwwcOBA0i937doFiqKwZs0aMuZWV1fD0tKSUXmTk350584dDBw4EA4ODoz0plmzZsHExAQzZsxgjOmvXr1CU1MTz9KempubkZ+fD4qi0KVLF8yaNYtR/hto7UOxsbHQ0NDA0qVLOWqHPt+rV68iLCwMSkpKsLS0xP79+4lKZ+zYsRg6dCjKysp42l8B9rUG7TGnra1NVBg0vnz5wvVm+/Pnzxg1ahQePXqEpqYmPHjwAA4ODpCVlSX9+d27dygqKkJJSUmH59lZPHjwANLS0ox1Fo2Kigp4eHhAVVUVmpqakJCQYLOU+FF0NBbRfWfjxo1wdHQk80ZSUhJCQkIwcuRIjtZj9HeKioqQlpYGoHUdQFc+Zv3Nmpoa+Pr6QlFREfv27UNzczM+fvzI8TNlfddycnIQHR0NERERosZnPcfPnz/j2LFjuH79OseG8W3bnDFjBnR0dLBu3TpCTL19+xampqZwd3fHqVOn0NDQADs7O4Y3Iqc+l6y4efMmPD094eXlxSCmxo0bh169ejFUVNygoKAAY8aMIWssGps2bYKsrCzu3LmDxsZGBAQEYNasWWwpqj8K1uqmVVVVKC4uxrJly/Dlyxe8f/8eqqqqmDBhAt6/fw8VFRVYWFhg69atXF9ffX09Vq1aBWFhYcTExAAAHBwcsHfvXjx79gxJSUkQFxdnrBXi4uLg5+cHb29vrrNogNb9y6ZNmxjqXjpzRVRUFAsWLMDq1avh6ekJIyOj36l6PxG/Sal/EW0Hu/v37zMWNnV1ddDT04Ouri4ePnzY7mKLk8G1pqYGdXV1yMvLQ1lZGaytrWFkZAQ7OzucPHmy3QWtrq4urK2t0dzczNWGYdWqVRg0aBBMTEywa9cuhjTa19cXvXv3RkJCAlxdXaGoqMjVy9/2Op4+fYro6Gjy7+LiYgQGBsLBwYGUlW4LbiukZWZmMgxCL1++jH79+jE8N7hNt2pP6n38+HHo6+tDT0+PzdtjypQp7aZ5dbY9oHWzu2zZMgwZMoQtrWzZsmUwMTHBtGnTGKbi3Gwa6O+mpKRAUlISEyZMYCwely5dii5dumD58uUoLi5GYmIilJSUGJWbOtsWjbYKrFmzZkFeXp6heKiqqiIVkzglGFmfy9GjR7Fw4ULMnTuXkNPPnz+Hrq4uAgICSAqbvb09MbEGOCP82vaHxsZGIsenN55tjystLcXs2bN50h6NkJAQCAoKolevXpg0aRJZjOno6DCqXv3Vb3QGq1atwtixYwG0RuiEhISIz9u3b9/Y+s7z588RHh4OcXHxH0p3YO1Hf/75JympPGjQIOJX9/r1azg7O0NGRgZHjhyBq6srzMzMOLq+adOmITo6mqhbv3z5Ajk5Obi6ujJMdRcvXoyuXbti0aJFePz4Mfz8/Eg6MdD5e9vR8Zs2bYKzszMEBAQwZ84cYlQ/ffp0jBgxgnEst+kqmzdvxuTJkzFnzhyi7qOVknZ2dliyZAkaGhrQt29fYnAMcBfwePXqFR49esTw/nr16hUmTZrEUEwlJiZi6NChXFVPZC1jr6ysjEmTJhGyqbGxEYaGhtDX1ycE5Pz589tVLHHSZl1dHXbs2AELCwv079+fjHsrV65E165d4e/vj9DQUDg7O0NPT49jEoH1Wdy6dQvBwcFwdHRkeLvNnj0b5ubm+OOPP/D48WP07dsXzs7ObOfMCzx+/BgZGRno1q0bYmJiyPOj26isrMS8efO4Ui2dPn0aqqqqSE5OxocPHxAaGgo7OzuoqanhxIkTSExMhJaWFk82YKznfvHiRYwePRpDhw7FggULiCIpNzeXeMyx+jtxAtZxYfv27ZCUlISDgwODUM3JySHEVHvBT16M8wcOHIClpSW+fv1Kfo/1d8vLy7F//35s27aN4yIorP1ux44diIuLQ3x8PMODJiEhAUZGRsjJyUFVVRUCAgIY95iTa33//j0kJSWho6ODo0ePorq6GhYWFrC3t8fp06cZv/n582eIi4tDS0uLkR7LKW7cuEHeifz8fEyePBl9+vRhKP64rYTbHv78809ISEjgxo0bJLBC3//i4mLY2tpCT08PmpqaMDAw4GrcBVqViXSxGRo3btyAl5cXXF1dibobaF378oK4oNNZ5eXl2dLYsrKySMVETU1Njjxh6X7B+nwOHTqEkSNHoqSkhJCH48ePR1hYGAk8DBs2DBISEggODuZJpcjy8nJs2bIFEhISGDZsGMLDwwlRWl9fjxMnTkBMTIxRDbm6uprrZwq0BvB0dHRAURQmTZrE+FtTUxNiYmJga2tLlMK8Um3+Rvv4TUr9S2AdNFatWoURI0ZAQ0ODrfpZfX099PX1YWRk1K5x6I+CHnyeP3+O4OBg6Ovro1u3bujbty/Gjx+PlpYWuLi4wMbGpl1i6vnz51xLxePj49G7d2/Mnj0b8+fPh6CgIKZNm4anT5+SYyIjI+Ht7Y3AwECevfyLFy+Gu7s7LCws2FI1aGLK1dUVmzZt4qodVtBy1KCgIEyZMoXxt8uXLyM4OBjm5ubtql06A9bn9P37d7ZqV6amphg4cCBp59u3b7C3tydVmrhpb/r06RAWFoahoSG6du0KCwsLtuprK1asgJycHFvElRvcvXsXoqKi2LZtW7uT74oVKyAgIABTU1OIi4u3a0r4d5gxYwaSk5PJ9e7cuRPW1tZIT08nm32gtfoeXXmvvcUkN303JiYGysrK8PPzQ0hICCiKQnJyMoBWGbqJiQmMjIygo6MDXV1driZo1nN/9OgRzp8/j5cvXxJF45IlS0BRFJFy0+fHSghyGn2kS2QvXboUlZWVaGxsxLlz50gqAw1nZ2eevqM0pk6diqCgIJw7dw5CQkKMNlatWoXJkyeTa6upqcGVK1cYZdl/FAkJCZCQkEBGRgaePHkCX19fSElJEWPQDx8+kLHZy8uLY8+1yZMnw8zMDLNmzSIbv7y8PJiYmMDT05NBTC1btgxiYmLQ0dGBqakpx5sH1nPcsmULJk6ciIEDB+LQoUNoaGhAbW0tW2UcNzc3kmrKKVjbnTFjBqSkpODu7g5DQ0PIy8sTz5KCggJMmjQJqqqqUFJS4nqTQo87x48fh66uLpSUlKCrq8sYVwsLCzF16lRQFAVHR0f07NmTY/UFKy5cuAB+fn5s376dTRHX3NwMc3NzUsBCSEiI4SnWGbTX72pqarBjxw6YmZkxiKm0tDRMmTIFISEhiI2N5To9mxXXr19H//794ejoyFDGJiYmwszMDAoKCrC2tubJBoV+rjU1NWypW0eOHEH37t0RFxdH2lqzZg1DUclJW2/fvsWoUaPY5shHjx4hPj4eSkpKJD2d9vzkBel27NgxCAkJYezYsRg9ejQsLCzg6+tLri03NxfTp0+HlJQUx4qItnPClStX4ODgADExMZJKT19LTk4OnJ2d0bVrV56l2bOCLp7R3rk9ePCA49RvGqzvS2xsLERFReHq6gpra2tGUCc3NxeSkpJQV1eHsrIyDA0NybjL6XO9fPkyunTpQp5hRkYGqqur4eLiAmtra5w+fZoc+/z5cwQFBWHw4MFcVyurqKiArq4uFBQUSL/Jy8sj1VxZ1wvcEIv79+9n9InCwkJYWFgQb74PHz7g7t27mDp1KhkjPnz4gKSkJGzevJmj8Yj1WeTn50NdXR0hISEky4HGzZs3ISEhAVdXV7a0Ll4QF8OHDwdFUVi1ahVDOQ20ChkOHjyIDRs2kGv70Tbp5/H06VPMmzePqNlUVVXZxiJfX19GQD86Ohq7d+/muKgNDdZ7XFFRgU2bNhGbBFbQxJS0tDQ8PDx41ib976dPn8Ld3Z1ho8B6HysrK1FTU8Mz1eZvdIzfpNS/gLaEFD8/P0aPHg0FBQXIy8sjNTWV0ekbGhogJSXFcTlwur0nT55AREQE0dHR2LFjB1JSUhAYGAiKohAeHo53796hb9++sLGxQXp6OoBWmSSnBAYrjh49ClVVVUIQPHjwABRFQVxcHFFRUYyKDV+/fuXq5Wed/NavX0/S2ExMTCAtLc1WTe/t27ewt7dnDLrctDl37lyIi4vDz88Penp66NGjB9sG++rVq3ByciKlyjkBaz9avHgxHB0d4enpiTFjxpD7lpqaCiMjI4iJiaFv374IDg6GpaUl8a3hdBGUl5eHyMhI3L9/Hy0tLdixYwfs7OwQGhrabiUxXkYV1q9fDy8vL0aVv7YLnvPnzyM1NZUjIvX79+/Q1tYmykGgtf+OHj0aoqKi8PHxwdy5c1FRUYHJkycjNDSUaxPWtkhOToaMjAx5X06ePAmKohh5/AUFBdi6dSvWrFnD1SawPTm8rKwsHBwc4Ofnh/fv36OlpQUrV64ERVEYPnw4HBwcoKWlxfXkHBsbCyUlJbi5ucHc3By9e/dmkCbV1dXIzc0lJYe5aa+jNLsbN27A3Nwc3bp1Y0Ssq6qq4O/vz2bs29TUxLY4/Du8f/8eDg4OOHXqFIBWYkFAQIAY37JeV1FREUfjH+tznDdvHqytrREfH0+inXl5eTAwMGAjpu7du4fr16/zJHU4NjYWUlJSSEhIwKhRo6Cqqorhw4eT36ysrMSdO3fg6ekJAwMDni3uPn78iEmTJhGfkmfPnsHX1xciIiKEmCopKcGtW7cY4xE37Z85cwaCgoLYvHkz3r17h6SkJFAURSqNAq1z2YkTJzBv3jyGhw0naGlpQVNTEyZOnEiUfaxmv6xj4fz58zFv3jyOKyGxjqfZ2dnIzs4mhv4NDQ3YvXs3TE1NGcRUW0KTm3u7fft2ODo6MlK12yOmHj9+jJs3b/LkedJtZWRkwNPTE1ZWVggMDERRURH5fZqYCgoKwrBhw8DPz8+VF8+9e/cQFBQEU1NTskZoex/v3r2LTZs2wdzcnGdKqYcPH0JDQ4OQTYWFhejTpw969eoFGxsbsj7IycnBnDlz2IJNP4LLly8TJW9ERARJzbl06RL09PRgYmLC5qv26NEjjB8/nqv1Qkdz8J07dyAuLs4Y4+mU23HjxuHgwYM8mb/z8vIQFhbGUE7SakL6fr948QKbN2/G1q1beUbgRkREwNjYmLwnZ86cIcSUra0tdu7ciXfv3mHu3LkYPnw4R+rxtmhpacGdO3dgamoKHR0d0m9evHhBihpwmtZKY+vWrfD09GRTeykrK2Pp0qXIysrC0KFDYWhoCEtLS1AU1a4CjNOgGa2QT09Ph42NDUJDQ9nW8y4uLlBSUmKzy+gM2q5hWfvigAEDICIigvT09L8MHHWWkHr06BEoisLGjRtx6dIlJCYmYuzYsaRvtLS0oKamBoMGDYKPjw/Wrl1LiiFwk4JJg77Gjx8/ora2FjU1Ndi8eTP4+fnZVEsNDQ04evQolJWVeVLhuaamhpH98PLlS5iamkJbW5sEe9oji3mpwv0Ndvwmpf5FZGVlYdSoUWTirq+vh5OTE2xsbJCWlsYYYBobG7maqEtLS4kPQ9vPN2zYgB49eiA6OhqNjY1wd3eHrq4ubG1tISYmxig7zAmam5uRnp5Ooibp6ekQERHBwYMHcfToUVAUhcmTJ7MZH3L78l+4cAELFy4kstoPHz5gzJgxsLGxwcqVKxnHfvr0iSc+Km/evMGff/5J7tnjx48xYMAASEtLs0VYsrOzeZJCt2rVKggJCSEhIQETJkyAhoYGdHR0CON/4sQJ6OrqwsbGhqEC4TSyfPjwYaioqMDGxobhRbB9+3Y4ODggNDS0XTKIVwvN2bNnw8DAoF1ijU4N4hT08/j27RucnJxgZWXFMMy8ffs2li5dCjk5Ofj4+MDf3x8URTFSSzhB2z63atUqjBo1CkArQSUoKEgWtOXl5cSnixXcEn9r1qyBlJQUKVk/adIk8PHxEQKjpaUFR44cgZeXF6KiorhWMiYlJaF3794kBS4zMxMURTH8qVJSUuDg4ABnZ2eu2rt27RqcnZ0ZykT6npeXl2PChAnQ09PDwoUL8enTJ9y5cwc+Pj4wMTHhiHBs+15/+fIF+vr6KCoqwokTJwiZAbT6Lu3cuZOtaiA36XPPnj1DYGAg1NXVMWvWLJISQxNTXl5ejOqFNLjpQ5cvX4a6ujoZ59LS0sDHx4ekpCRyzIULFxAQEMBTJey+ffvQq1cvWFhYkDEPaE2h8/X1ZVSOZAU37X7+/BmDBw8mKbMlJSVQVlaGv78/JCQkEBQUxPFvtwfWvufu7k4UM23/xhoQ4LZKGdAalFJSUoK8vDz4+fnxxx9/4P3792hqaiIeUyEhIVybtrOiqakJu3fvhq6uLgIDA9mIKScnJzbTb/p73CItLQ1CQkKIiYlBWloadHR04ODggKtXr5Lfv3jxIlxdXdG/f3+uq5XduXMH5ubm6N69O8OTsT2bBF6mQJ06dQqRkZEAWtcsampqiIiIICXPvb29yfzKSbu0gsbV1RUhISEQFRUl41tzczMuXboEU1NTWFhYdEiOdPZ50n2QHgdzcnKQkZGBgoICNDU1obKyElFRUbCysiKqpffv32Pu3LmQlpbmmjQGWlOfVFVVYWBgQII5NBISEiAiItIuwceNxxH9nE6fPo3w8HCcPXsWwcHBsLGxwZkzZwipQL/HsrKyHCs22xtTWlpakJWVBQMDAwYxlZubizFjxsDCwoJr5Rt9f27dukXUvzNnzoSKigp69OiBKVOmEDVYYGAgG6HRGbDe34ULFyIiIoKYXZ84cQIWFhYICwsjxFRFRQUiIyNx+PBhnni07tq1C+PGjcO4ceMYiqXg4GCIi4vj5MmTXI0FrO8HPz8/sUSYM2cOKIqCpqYmUYnSxz579gzOzs4wNjaGgYFBpyocdwS6L504cQJubm44cOAA6uvrUV5ejk2bNkFcXJytmE1DQwNPig8kJCTA2dkZioqKmDFjBkmNfPXqFUxMTKCrq0v2Nr9JqH8Wv0mpfwmpqanQ19eHqqoqY2FTUVEBZ2dnkirUNnrC6cLr4cOH0NfXx9OnT8lv0ANOeXk5FixYgB49euD69esoLy/H6tWrkZiYyFHJ1vZe4nfv3uH9+/f49OkTLC0tiVqpqqoK8vLy6NKlCxtRxA2uX78OBQUFSEpKMtIei4uLMXbsWFhbW7db1pMbiTFdIl5FRYWRMpGTk4OQkBD07t273VQKbtq8du0axo0bxzBaLC4uhrW1NQwMDMhnx44dg7W1NYYOHcr1QvrQoUNwcXGBqKgoW7nkHTt2wNnZGR4eHjyJpNBgbWfz5s2QkZHBrVu3GH5ajY2NGDlyJA4cOMBVW6zG5Q4ODu2+i9XV1ViyZAkiIiJAURT69euH8vJyrj1xaPIgMTERwcHBSE1NZUsp27VrF8aPH89WLIBTNDc3o7a2FiEhIWSxfurUKQgKCmLbtm0AmOksrBtQbqK7iYmJZNFx+PBhCAsLE6KGbuvLly8Mgp7T9nJzc+Hk5ARfX1/GeED/7qdPn4ipeo8ePWBqagpXV1eOiBPW57lp0ybcvn0bHz9+hKGhIUaPHg1xcXHGBpRW9dDlh7nFpEmTYG1tjcDAQOjr60NUVBQzZ84k72N+fj6MjY1hZmbGVQWktkhOToa5uTn5f1Zvru/fv+Py5csAWol6eszjVgkLtJJhXl5eEBQUJP5KrH5PAQEBoCiKQVh1Fm3N15ubm7F582Y8f/4cpaWlMDAwwJgxY9DQ0EAKLnh7e3PcXlvQyryamhpERkbCy8sLX758YQRS6KALt1W0aKxZswaSkpK4evUqnjx5guTkZOL5UV5ejrq6OuzcuRPKysoME+HOor35r7a2FocPH4ahoSH8/f0ZxBRd3ZXb1Pe2ePnyJYyMjMhG8OvXr1BUVISwsDDU1NRw9epVsuGurq7utFqyI2RnZ8PJyQn29vYMM+OfvRl68uQJWlpa0K9fPwwdOhRA6303MzMDRVFwdXXt9Hls2rSJVOarrKyEnJwcunbtylbtlyamzM3NYW1tzfVctmHDBiQmJpK2U1JSICIiAiUlJfTq1QsLFizA169f8ebNG6L0kJGRgb6+PuTl5Xk2Du7btw9OTk4QFBQkBDEd/Hv+/Dnk5eXJOMgJ6HeluLiYzUi7tLQU2tra2LBhA0pLSxEcHAw7OztkZGSgubkZWVlZSEtLY1uzdRbXr19H3759GZ/RxJS2tjaMjIwYHlOsdgedBT3vtrS04NKlSxAQEMDixYvx/ft31NTU4MWLFwyCpLm5GXZ2dmzZEJwgLi4Offr0IQozGmlpabC3t4etrS3GjRsHV1dXWFlZtetT1lnExsZCVlYWEydOxIwZM0BRFP744w/ydzrAnZyczJWP59OnT4kHGY3S0lIsW7YMXbp0IfM2rc4FWtfD375942lqbXp6Ovj4+LBs2TJGILu8vBybN2+GhIQEYmNjuW6H9ZksXboUkpKSWLJkCebOnQsDAwP07duXWGPk5+fD0tIS4uLibD6yv/Hz8ZuU+pdQWlqKsLAwCAsLk3xeGpWVlejbty9UVVXZjPU4xe7du8HHx0f+3XahUVhYCBERESxevJirdlivo6SkhK3iT25uLnR0dHD27FkAralzEyZM4HiQ7QjFxcWYO3cuxMTE2NJv3r59i/Hjx0NVVZWnpT1LSkowfvx4dO3alc1nIicnB6GhoaAoiuOUirbIyMiAgYEB+vTpw2aa/uLFCygqKjK8IFJTU2FtbY2AgIAfXoR1NMGePn0a5ubmsLGxYVNFrV27FuPHj+eJOSnQulno06cPo29aW1tDS0sL165dQ3l5OaqqqjBz5kzIy8tzVdmKBt0Xv379Cnt7e5LS2l4f3blzJ8TExDqdWtH2/qxatQr+/v5obm7GuXPnYGZmxlaau6qqCr6+vpg0aRJPDONZ4e/vj4yMDGRkZDCUPA0NDdixYwdOnDjBuH5O26eve9iwYYiIiMCVK1fYiLcFCxawlVnndnzIz8+Hl5cXPD09GcQUTTzV19ejsrISW7duxcePHztNnNAKIZogffHiBWRlZQkZsmPHDpIqTYN+nm5ublwtMun/pqenQ0JCAg8fPiQbg6lTp0JPT4+hmMrJycGwYcN49o4CreOLn58f0tLSICgoyHiep06dQnR0NMPEmNu26bmxpaUFt27dgqWlJdTV1ckmiO6fubm5DJ+jzoKVkDp9+jQJnrD6zTk7O5MIflJSEuzt7aGnp8f1BhAAUSHQ5svXr19H9+7dMXXqVLIJB1oVpPr6+jwLBgwaNIhhBg+0egLRmwiglSQ7deoUT+Zu2h+GRl1dHQ4dOgRDQ0OGYurixYuYNWsWz41mnzx5gkWLFqG2thbv37+HmpoaoqOjUVNTA01NTdjb2+P8+fNc9SOg9Xnu27cPK1asIHMnTUz5+voy/H94QUyxKkLbbrJKSkpgYGBAqrZ9//4dI0aMwMGDBztN4u7atQshISFoampCc3MzqYKmpaUFT09PRgVFoHU8v3z5MmRlZYlqi1OMHz8esrKyWLlyJR49egR7e3ts3rwZnz59wsKFC6Guro6YmBh8/vwZjY2NyMvLw7p165Cens7xO9rR+JWWlgZ9fX025eabN28gLy9P1r6cori4GBISEqAoCj4+Pjhy5Ajy8vIAtI7/Dg4OKC0tJf6xLi4uDLUqN2hpaUF6ejpkZWXh4+PD+Bz43xynqqpKCFxu2mqL6dOnk7Q91sqb379/x8OHD+Hj4wMjIyOuUyGvXr0KRUVFxjqB9XyuX7+OadOmwcnJCcOGDePY/5EVly9fhoqKClH7Hzt2DD179mRUPgYAJycnjgIerCl7AgICcHZ2JgQYjW/fvhHF1N69ewEwq/LxCi0tLfjy5QspPtLeedLm5xRFEd9WbvH8+XPEx8eT8Q5oFWwMHDgQHh4eRC359OlTRERE/DYz/xfwm5T6B9DRC/3lyxeEhobCysoKW7duZasEMmHCBJ69FNevXwcfH1+7sncaJiYmDFa+s2grVTYxMYGKigoMDAxw6NAhfPv2DY8fPyaeI6dPn4avry/c3d3J93hRxYueIMrKypCQkAA1NTXMmTOHcUxRURGWL1/O8f3t6JmWl5djyJAhEBAQYDOmf/ToEebMmcNxm20n6by8PERFRUFAQIDtuVVUVEBfX59twD948CBcXV1/aOPCeo3nz59HRkYGY0GVkZEBFxcXODo6shlmduT1xAmKi4uJ6TedLlNfXw9HR0coKipCSUkJDg4O6N27N8cRT9bzbDsJl5WVEWKKtQgA63N0dXXFH3/88cObiFGjRuH06dOM35g8eTLi4+PJOUyYMAEKCgpYunQpcnNzcefOHXh5ecHY2JgrDyvWBdvSpUuxYcMGtLS0ICQkBJqamhAVFWWQmSUlJXBzc+PYZLysrAy5ubk4d+4cXr16Re7f2bNnYWhoiG7dujEWXpWVlfDz82OTbvMCrMQUK+Hf0tKC9+/fw8vLi/j1AD/ef7dt2waKohiKxTdv3kBFRQVv374lRBW94AsLC8OgQYPg7OwMfX19jhe1bZWsBw4cgIqKCmPBDrSWlO/Vqxdmz57NtgnrbJv5+fm4ePEi5syZgyNHjhCvoU+fPpHN0o4dO8jxtbW18PLywtChQ3mm/sjOzgZFUYxqjLdu3YK9vT10dHTYiCkand2ssBJSqampoCgKFEXhxYsX5POYmBhGxDkuLg5z5szhmZLm4sWLsLW1hZmZGSGmUlJS0LNnT/Tt2xdeXl7Ec4QXio+mpiZSRp3esDQ2NpJ7N3fuXOjr67NVXeJmrXL37l3Iyspi9OjRjM9pjxFhYeF2SVRepISzEnv0piQyMhKDBg0iCp7g4GBQFAVTU1OuUhVTUlIgIyMDBwcHuLi4oHv37ti9ezeAVrLKyckJAQEBHJund4QTJ07A2dkZWlpaWLRoEQmMVVdXQ19fHyEhIXj9+jXi4uJgYGDQbgW8vwNrWs2lS5fIvfv48SOMjY3Rt29fNmIKaCXIebHOjYuLg6qqKhITEzFixAhGWuDq1auhoaGBmJgYrgv2AMwx89KlSzh37hwuXbpEPqP9h7S1tXHixAmkpqbC19eXJ+XkX79+TQKCpqamGDVqFJSUlLB161YcOXIEfn5+xLIiJycHbm5u8Pf350mVNKD1nTx9+jTU1dUZa3egdZ3o5eWFvn37clzBEGCO2ykpKYzg8YwZM8i6iB7nDx06RAoW8SItPCUlBXp6eqiqqmKz9WB99m0tVjoDVpU/AOzduxcODg4AWgkpVsuGiooKnDt3jnyX03V1VlYWunfvjnnz5qGpqQlbt26FpKQkg5gqLy/H7NmzO/Tm4hXKy8uhqqra4Z60pqYGNTU12LlzJ0mf5AZXr14FRVHo2bMnDh06xPhbdnY2JCQkuPYi+w3u8ZuU+slgHVyTkpIwa9YsrFixgkTVv3z5gkGDBsHW1paNmKLBi5fi7du3kJaWRkBAAEO9RLf39etX2NraYt++fVy3NX/+fEhLS+P48eP4/v07LC0toampSaI5a9asgbS0NDQ0NGBra8tV5RHW+7Vu3TqMGTMG1tbW2L9/P96/f4+qqiokJCRAR0eHjZii0dn7y9rm7t27ERcXh+joaCKnrq2txdChQ9slpjhtkxU7duwgi+c3b95g7NixMDAwYBBQjY2NjM/aVpL4O7A+iylTpkBMTAwqKiro2bMnAgICSIrIqVOn0LdvX7i4uLAtQnjhaULj7du3mD17NmRlZbFixQryeUpKCtavX489e/ZwXEmG9XmuXbsWI0eOhKOjI44dO0Y28DQxZWtry1AG0Ofq4uLSKZmxsbEx5OXlcfHiRbJ5HTZsGJs6KDIyEubm5ujSpQusrKzg5ubG8aJr1apV5P/r6+vR0NAAAwMDEpkvLS2FoaEhdHV18f37d1RWVuLz58/w9vaGra0tR332+PHjCAwMhLS0NERERNC1a1dMnDgRT548QVVVFYYPHw49PT1s2rQJ379/x6NHj+Dj4wNTU1Oem8fTaE8x9fHjRzg6OkJNTY0jv4aXL18iOjoaYmJiZENZXFwMLS0tfPr0iXENR48eRXh4OMLDw7Fo0SKOjW43btwIiqLw5s0b8vvJyclQUFBgSx2hS4YrKCgwpPmdxeHDh2FnZwcNDQ3IyMhAUFAQ4uLixID/4sWLEBMTw9ChQ3Hy5EmkpaXB3d2dYWrOq+e5ZcsW9OzZk7wzLS0tuHnzJhwdHaGvr88oOc8p6HM9cuQIunTpgtmzZ8PQ0JChxrx9+zaEhYXh5OSEoKAgCAsLIycnh+u2WXH58mW4u7vDyMiIeNLcu3cPs2fPRmhoKGbOnMlRqj3Q8QZn8eLFEBERIYbN9Pu/bNkyODk5cRVwaPvdiooKrFixAsbGxhg3bhzjb+/evYOqqiq6deuGadOmAeC+D9HfP3nyJOzs7NjUSe7u7oyxeMqUKXj48CGb8rszePjwIaSlpUlxg7KyMlAUhQULFpD7ce/ePRgbGzMIMW5x584diImJYcaMGZg6dSpkZGQwdOhQ4omzb98+qKmpQUZGBgoKChz5Da1cuRI6OjooLy/HtWvXoKCggJiYGDJ/FhYWwtjYGJ6ensjIyEBjYyPs7OwYpDKnvkqsJOGcOXPQs2dPKCsrs/kurl69Gnp6ehg/fjxXz5EVU6dOhZiYGJSUlNCjRw8MHDiQEH4nT54k6eDBwcFYvHgxOVdeqH6Dg4PRr18/HDt2DMePH4ezszP69esHiqJgZWXFqKLYngflj4B+TwoKCpCdnc0Y1zIyMqChoUHWJA0NDZg3bx7Gjh3LFXHbthKwjo4O3N3dGUrK+Ph4KCoqkoq9ZWVluHTpEk8KHgCtwVt+fn6StsdKTJ09e5Yt24Gb8Ygmxc+cOYPAwEDs3LkTgoKCjEDd2bNnERERwVjjcjL+Xr16leG3VV5e3iExNXfuXFAUxbNsEvoe0el/79+/h4iICKPYC33M8+fPsXfvXtTX1/N0/bds2TJQFIUZM2aw/bazszObMvg3/nn8JqV+Ilg7PF0i1s7ODmZmZoy83c+fP2PQoEFwcHDAqlWrfpqXQGpqKnr06IFhw4aR6DaN2bNnQ1lZmaPJmjWCUFpaCnt7ezKQnT17FsLCwmSApY/Ny8tjqCa4nUSmT5+O3r17IyEhAbNmzYKIiAhGjRqFxsZGlJSUYP78+dDT0+PpoBMbG4vevXtj6tSpGDhwIFRVVTFlyhQArRPN8OHDISwszIigcQs6Sqanp0cifoWFhRgzZgzk5eXRr18/zJgxA8HBwVBXV2fc1x/tV6zH5eXlQUtLC1lZWXj79i0ePXoENTU1uLq6kgny+PHjMDY25qq8e1ufs+vXrzMqzQGtm/zZs2ejT58+xPuIl6BLys+ZMweRkZHQ1NTEtGnTCJlaVlYGJycnqKurE4l1S0sLHj9+DIqifsiri3Uh4e7uDhkZGRI9HjBgAPFmaVtp5ubNmygsLOT4fblx4wa6devGMEj+/v071NTUGIbXV69eRZ8+faCpqUmKHZiamnJEhG3fvh2SkpJYsGABMjIy8OjRI/z555/g5+eHp6cn8vLyUFJSgmHDhkFVVRVCQkIwMTHh2tT8R0ATU97e3khPT4e7uzt0dHRIu5yMR0VFRZg0aRJERESQmpqKkpISaGlpMYoBdITOXufWrVvRs2dPpKamMj5vaWmBlpYWXF1dGekTT58+RWhoKFauXMkxmbBt2zYICQlhy5YtJFX11KlTCAoKQpcuXYiX2/nz56GjowMVFRVYWFhgwIABXD3Pvxq3tm3bhq5duzKIqVu3bkFbW5vR1zuDtirS5ORkUBRFUmA0NTUZfka0cqBfv34YMWIETzyd7t+/z1ai/uLFi3B3d4exsTEhxeh+yguD3StXruDUqVN4/fo1mpqa8OnTJwQFBUFfXx93795FS0sLqqur4enpicGDB3N4Zcw2t23bhkOHDqGurg6VlZVYtWoVDAwMGMQUPUacPn2ap2kkaWlp4Ofnx5IlS9iMe52cnGBtbY2jR49i0qRJEBcX/+G0yI7O8dSpU/D39wfQOv4oKCgwlGF0al1WVhbPSJPXr19jyZIljNT3c+fOwcDAAKGhoaSvvn//HpcvX+Yo9ZMei1iLffz5558wNTVFXFwcSWErLCyElZUV9PX1oaWlBX19fY6LrQBgEC1paWnYs2cPgNagqISEBBYuXMhQwQHAokWLYGFhwbHPEetY9Pz5c2hoaODu3bt48+YN7t69CyUlJXh5eZFrTklJgaenJ1xcXMj58kpBmZubC29vb3h4eCAvLw/fv3/H7du34efnR4LLvEjxT01Nhby8PDQ0NNClSxeEhISQNcu5c+egqakJAQEBWFpaQlBQkGeedvHx8Rg5ciT09fXRs2dPODg4kKrgQKvROe1nxxpo7cwY0dGxb968IQQ5q7K4trYWzs7OPPGsAoD9+/cjPDwcDQ0NyMrKgrq6Orp06cIIvNbU1MDb2xsjR47k6d6Q/q2Kiop2iamvX79i4cKFPLMbAVqDK/b29mSsmzZtGmRlZdl81v744w8EBAT8UAC9PbA+17ZBxnnz5pH9N038f//+Hbq6uliwYAFH7f0G7/CblPoH8ODBAwQGBhKT669fv2LRokXo2rUrydv9/PkzPDw8MHbs2J9GSjU1NWHLli3o1q0btLS0EBERgVmzZiEsLAxiYmIcSf/bvvzV1dVQU1NDRUUFzp8/z/Cmqa6uxrp169gWCtwuNK9evQpVVVUS0c3KymKTnn7+/BkxMTEICwvjyf09c+YMVFRUiOItOTkZfHx85HkCrYO9j48PMQzlBO2d64ULF+Dp6QkjIyOyOSkqKsK4ceMgKioKR0dHhocApxv7FStWYMiQIYiIiADwv+f05s0b9OnTh1SHA1pJJE6f4+bNm6GlpUU20eXl5YiMjIScnBxbVbs3b97A19cXQkJCPDXG379/P1RVVUmU+MaNG6AoChoaGpgwYQJRJ3z+/Bnjxo1ju6dt+3RHaHuPgoKCIC0tjdu3b2PAgAGYP38+vn37hsLCQrx69Qrfvn1DVlYWY2Ll5D5///4dhw8fhpKSEgYNGkQ+p325WH+3qqoK69atw8qVK3H48GGOoo87duxAt27d2MxYgVbFqJCQENnY0ga0aWlpePLkCc+I6r9Dfn4+fHx8QFEUx4QU6/t5+fJlXL9+HRMmTICIiAji4uJgZGQEb29vjBs3DtHR0QgPD8egQYOIqSYn2LJlC7p27cpGSGVlZQFoJaCUlZVhbW2N5ORknDt3Dp6enggNDSXn29kxYdu2beDj42NrE2glrkNCQtCzZ0+ivvj+/TuKi4tRWlpK2uT2eS5atIiRVkpj69at6NKlC1GFtrS0MAp6dAY7d+6EvLw8amtr0djYiIqKCri5uZFxvbq6GoqKimzGzTQ43WSz9qPi4mI4OzvD0dGRQWi2tLQgIyMDKioqsLOz4zoNibVNenPQq1cvmJubY+3atWhqasKTJ08wcOBAdOvWjagoDQwMuFI306ADSdu2bSMkwbdv37B69WriQ3TkyBG4uroiICCA477bHr58+QJLS0skJiYyPqf76IcPH6Cvrw9NTU1oa2v/cLUpeuwqKSnBvXv3GOe6ceNGmJqaori4GEpKShg9ejQ5/tixYxg5ciRX6qi1a9eSftrU1IR3795BVlaWFDpgxZkzZ6Cnp4ehQ4dyVbF227Zt6NGjR7vjPK18YyWm3r17h927d2Pjxo0cK0SBVrW3mZkZ3NzckJKSwlYBl64auXLlSjZy90eCBH+HlStXIjw8nJCKdN/Mz8+HpKQkJkyYQI5NTk4mxV94RTbSyM/Ph4eHBzw8PDpU5XODW7duEX/AV69eITMzE25ubnB3dyfBrG/fvmHFihVYv349CeBxi40bN0JYWBi3b9/Gu3fvcP36dZiamsLLywunTp0ix02YMAFBQUFcZ1ls374dU6ZMwciRI0kVvU2bNsHKygrBwcE4e/YsTpw4AU9PT4Z9ArdYvHgxevfuTdRD+/btI+bmycnJOHv2LNzc3GBoaPjTlOMAk5hitQLhpq2VK1eyFW9Zvnw5goODyb+zs7MRGhoKaWlprF27Flu2bEF0dDREREQ67dHa3jlv3LgRo0aNQmxsLJ4/f07+RtsoBAQEICYmBv7+/ox57Tf+PfwmpX4y6HQHKysrtqoFM2fORJ8+fciGt6Kigi1/+Wfgzp07CA4Ohp6eHuzs7DB+/Hiuq+xNmDABoaGhAFqjjD4+PhASEmJ4ixQVFcHOzo7nfgnnz5+Hvb09gNbcclaT3crKSrLoKisrY8vj5hS7du2Co6MjAPZKU1VVVcSvhvWZcoO20bWLFy/Czc0NRkZGZHPy+vVrjBkzBm5ubgxzbE7ar6ysxMSJEyEgIAAnJye289i3bx9kZGTYzFA52TDcu3cPqqqqsLe3J8TU/fv3MW7cOGhra7Plf8fHx0NFRQWGhoaMZ8opWlpakJKSgqVLlwJo9d8QFRXFrl27sGzZMvDz82PSpEl4+vQp43vcbI6mTp1K1B3Ozs6QlpaGgoICKIqCsbExREREICwsDCUlJbi5uXF1jfRihjYOVlFRQUhICADAzs6OkFLA/96LtmW6O3OtdBVK1j7IWsUFaE21pSiK0TYreG2s2RFevHiBiRMncrRBYj1Huk8WFRXh1atXmDhxInr16gUlJSUsWrQIw4YNw9ChQ8lGhtNFLb0Ba7uRHDBgAIKCgsj78+bNG7i4uEBDQwPKyspwcHDgmEh4+vQpKIoi6hW6XD3r9d+8eRPy8vIkvaotuH2eDQ0NmDZtGsOAlUZjYyPCwsLaNUTt7Dv68eNHQvTT0Vx6E0v/lqOjI0OpGR8fj7Vr13bugjrAuXPncODAAWzduhXOzs7w9vbGly9fGMe4ubmhe/fusLe353gRzdoHrl69CktLS9y6dQv5+fmIioqCpaUlI7X0xIkTWLt2LXbv3s2TFJl169ZBWlqaoS5lJYVPnDgBY2NjGBoawtPTkydGwqx48+YNlJSUSISe7tOsaGlpQXFxMb59+/ZDv8laPt3MzAw+Pj6MQF9hYSGcnJzQq1cvUuyA/k5sbCz8/Px+uC1W0M8hMDCQLYV97969kJaWhre3N5svy7lz5yArK4uoqCiO0q0uXrwIiqLIvElj2LBhpLoo7S0aFxfXbgpZZ99PmtSprq7GxYsX0bt3b/Ts2ZMog1ivY/r06VBSUsLq1au5qgDXFhUVFRgzZgx69uwJNzc3AK19hR57d+7cCTk5OYbq7NixYzA2NkZgYCCampp4ur7vyCeRF1i0aBGcnZ0Zn925cwfOzs4YPnw4T9tiRWRkJIO8AFrTpGlCnjXdtq2VQmcRGxsLaWlpzJo1C8OGDYOKigpJcdu+fTv8/f3RtWtXmJqawsfHh2PVL+v5sX7XysqKUfxk+/btcHBwgJCQEOzs7BAYGPjTleNAa7/evn07KIpCXFwc178XEBCAXr16MTJFZs+ezQiKAq1BrXnz5kFRURFGRkZwd3fnCSGVmJhIxloxMTHY29vjyJEj5JgFCxaAoih4eHgwCm397GDob/w1fpNSPxmrV6+GkZERhIWFCflEd/6bN29CVlaWKHxo/BMbMtaJkZP2WF/+O3fuwMzMjCzwtm7dCkVFRfj5+ZFjqqur4ePjg759+3I1sLZ3rikpKdDU1MTx48chIiLCKLeelpaGoUOHMsiTzk5e7R2flJSEsLAwtkplQGs6G13p5a/O+0eRlJQEOzs7tgjfhQsXYGVlBUtLS3J9BQUFGDNmDGxtbbFw4cIfbqO9a3z16hVmzpwJiqLYlAGHDh2Cjo4O24aJE9ApcHp6erC0tCSLu+zsbERFRUFXV5eR1x4XF4fVq1dztICn22uLDx8+4NOnT/jw4QMsLCyIfLqqqgry8vKQkZEhJAsnix/W72RmZkJbW5tByAQHB6Nbt25Yu3YtITZycnJQVFTEs4XIvn37cP78eRw6dAhycnJwdHSErKwsIadNTU1hamoKY2NjxMTEsJ33j+LMmTOk6mVbKT9NZtTU1EBNTQ2LFi3iuB1eg9PFSElJCSIjIxlFAF6+fImYmBiIiIjwzFeuuroa06dPB0VRDHPQ/v37Q1dXl2zYWO/l69evuU6TLiwsxKRJk9iMQFlNwIHWTbGLi0unf789tDdeVlVV4c8//2Sk0tGIj4+Hk5MTHB0dOepLZ8+eZRA8Dx48gKCgIFGfsZ7PoEGDSJrDrFmzQFEUUUFzgzt37oCiKKSlpREC2c7ODj4+PoQga2lpwfjx47Fz506eeGalpqYiMjKSvO9Aq8pt8uTJsLCwQGJiYrvpRtyOSePGjSMR+YKCAhw8eBBWVlYIDQ0larzm5ma8e/eOJ0q7tn3iy5cvUFBQwLp168hn9DXduHGDUbCgM7//7NkziIqKIjY2ls2bqaamBjNmzCCFV2pra/Hy5UvEx8dDXFyczVLhR0D3y8LCQigqKqK5uRm3b99mKAr3798PWVlZTJ48mXhR0rh48SLH1WpTUlJgbW2NAQMGkBSf4OBg6OjoMMix+fPnw9zcHGPHjmVTLXUGp0+fBkVRxPD5+fPnEBQUhJiYGAIDA8lxrP11xowZ6NWrFzZs2MD1upq1zxcUFCA2NhYURbH5sO7btw96enr49u0bo9+lp6fzXClFIz8/H35+frC2tsbt27d59rtLliyBubk5Ifvo6zl27Bi6devGsY9nR6CfUXR0NLy8vEib9L3fsWMHBAQE0K9fP4ZpPqfrhwsXLkBNTY1kPBw7dgx8fHyk+ACN/Px8fP78mWeqXxotLS1Ys2YNnJycGMrXr1+/4vXr1/jy5QvP2/wrlJeXY8+ePTxRvDU3N2P48OEQFRUlqrq4uDiikG+rKv769Svq6+t54qX3/PlzhIaGkrVXZWUlPD09YW9vj0OHDpF+tnDhQnTr1g27du0C8NvU/L+A36QUD9HRpJeUlAQdHR34+fkxFgWFhYVQUFBgeLr8U2AdxLnZEB45cgQDBgxAVFQU+ay0tBR//PEH1NXV4eLighEjRsDOzg6GhoY8Y/xPnDhBokJNTU1wcnJiU2fU1tbCz88PgwcP5onp9okTJ8iiIicnBz169ABFUYwJrKamBp6enoiIiOC4zTt37uDWrVuk/V27dsHKygr+/v5sxFRCQgIoioKCggKJRBYXF2PIkCFwd3f/Iak6a78tLS1lEHhfvnzBlClT0KVLF6xfvx6vX7/G27dv4enpCVdXV649C+i2nzx5gr1794KiKHh6ejKIqbFjx0JSUhIDBgzA4MGDIS4uTgjezqJtVb226kXaM4smjHJzczFy5Ehs3bqVJxPWqVOnEBUVRarssS6g3d3doaSkhCtXrrDdV26rUq5atQqCgoLIz89HZWUlDh06BGNjYwgJCeHIkSPYvXs31q1bhy1btmDNmjVcL4BOnToFBQUFREZGMjZbrD4GkpKSDPP1XxF79+4l6dBt058LCgowbtw4iIuLM9Q93Lwzr1+/xvTp0yEkJITU1FQMHz4c+vr6ZEH7V4EGbjZlb9++xdSpUyEkJES8o1h/s7GxEe7u7mwm1ZyA9TwLCgrw4MED1NfXk3dg5syZ6NKlC3bv3o26ujrU19dj4MCBDL+Rztzj/Px8UBSF6OhoMu58+PABnp6ekJKSIqlb9DsxbNgwREZGYuXKlejZsydHxtBt8ezZMxw9epRRjKO5uRkHDx6EnZ0dTExMkJSUhPHjx0NTU5MY8HID2h9KQECArcR4dXU1/vjjD9ja2mLatGlcpTW0XWs0Njaif//+sLa2xooVK+Dk5ARfX18MHz4cgYGB8PDwYAs48CJQd/78ebKR/f79OwYMGAA3NzdcuXKFcdzkyZPh6enZ6c0RnRLYnsqA/q3a2lpMmTIFOjo64Ofnh6mpKbS1tbmyTsjOzoagoCAhSoOCgmBsbMwIJO3ZswdycnKYNGkSV1XR2iIlJQVubm4ICgqCs7MzTE1NyVjEOmfFxMQgPDycq7Hv8+fPCA8PR69evcia+cmTJzh79izU1NTg4+NDjmWdV5csWcJGxv0oMjMzsXnz5nbP+82bN5gwYQK6du2KHTt24O3btygpKYGHhwdD3fxPBVxevHiBAQMGsFVX/VGwmprTOHHiBCiKYqTMAa2p4jo6OlynEHf0XtM+fm3tG/bt2wdfX1+Ym5tj5MiRnW6vrarqwIEDsLa2Jm2yZjxUVlbi4sWLbOfIzVi0adMmODk54eHDhySg+/btW/Tp04dN5cuKfzJox6siEvT/h4aGQlhYGFlZWaQoFNBarbe6uhotLS3Izc3lyl+OFdu2bYOxsTEsLCwY78KnT58IMUWnaAKtHlN8fHwMMcNv/Hv4TUrxCKwD1b1793D37l1GisWuXbtgY2MDGxsbZGRk4NSpU/Dx8YGxsfEvxc5+/vwZHz9+xNevX1FZWYkBAwZASkoKHh4ebMedPHkSISEhGD16NBITE7nyEGC9vy9evICgoCDCwsLIhiAjIwPm5uawsrLC+fPnkZSUBC8vL+jp6XFsBst6/K1bt2BsbIwhQ4aQDcGRI0fAz8+P2NhYXLp0iRjRcpP/vW/fPmhra8PX15dM+M3NzSQN1MfHhxFtPHz4MAYMGIA///yTcV/fvn37Q2WdWc9v7ty5MDExgYyMDCwsLHD48GHU1NSgvLycEFMiIiKYMGECXF1dycKP2w0DXSZ7woQJsLOzg5CQEKytrckkVVBQgJ07d8LZ2RmhoaEcS3tZMXfuXBgaGsLIyAjTp08nn9+6dQuamppYvHgxrl69Cj8/P/Tv35/8nZt39cOHDzA1NQUfHx+GDh1KPmc1pPbw8ABFUUShwQtkZ2dj0aJFjAXe9+/fcejQIaipqWHMmDHtfo9bU+qTJ092SEzdunULjo6OxIPoV8W3b98QGBhIFC5tUVRUhCFDhrCNj9zg7du3mDZtGgQEBCAhIUHeE9b338nJqV3/JW5QXFzMRkzR735BQQFcXV2JgokXQYD4+HhoaWmhV69eMDAwwOTJkwmJTJPx5ubm0NLS4tpzIy0tDb169cKECRMIAfPx40cEBwdDVFSUQRrQbYuJiXH1ntL3rqKiAuLi4qAoihHcoY+5cOECAgMDiXE8JwQGa3us+Pz5M4YNGwYNDQ1s2rSJcUx1dTXCw8MRFRXF8fNk/b3m5mYy1r1+/RoODg4wMDDA0qVLiVp8x44dcHJy4pkZNGvbI0eOBEVRhJh6+PAhjIyM4ObmhoULF+LYsWMYM2YMhIWFOTJrfvnyJUxNTfH48WNyv27fvo0VK1ZAW1sbAwYMwNGjRwG0GosfPnwYDx484EjxRt/Xx48fQ0BAgOEZVVNTg8DAQPj4+DDGgD179kBZWRmRkZEcq6Patg+0VhN1cHCAiIgIIS/aI8d5QdKUlZUhMjISfHx8hJiqrq7G8ePHoaamxlDnr1+/nqtq0gUFBejZsydkZGRgamqKdevWsb17hYWFmDBhAiiKgri4OCZMmAAnJyfSz/+pNHQa3HrapaWlQVdXlxHcnTBhAgQFBXHixAmUlZWhqakJ06dPh7a2NldKedZ7c+HCBSQnJyM9PZ3cu+nTp6NHjx7YtWsXXr16hbKyMvj7+2Pbtm3EIqAz6sLr169j+/btjLTKI0eOIDg4GCdPnmTLeEhLS8OUKVN+aB3dEVj7fG1tLVJTU2FjYwN9fX34+PgQ1d/BgwdhbGzMkwDHvw36mlkD4oMGDYKYmBi0tbUhJCQEHR0diIiIQFlZGRoaGlBVVeU486Et8vPzYWJigl69erF5d37+/Bk+Pj7Q0tJiKO1iY2MhKSmJ8vJynpzDb3CO36QUjzF9+nQoKytDVlYW4uLiCA0NJQP37t27oa6uDn5+fvj7+2PWrFlk8fUrEFPJyckICgpC3759ceHCBQCtE3dUVBSkpKQYE1lH4HajO2vWLEydOhVKSkro3r07fH19idfPhQsX4OXlBSkpKdjY2CAsLIwn+d8rV65EZGQklJWVwcfHh+HDhxNiav/+/ZCTk4OcnBzMzMzg7+/PcZt79uyBgIAA9u7dS5RArOauBw4cgK2tLdzc3FBUVITPnz9j4MCBjNLVrGVVO4MFCxZAQkICSUlJyMzMRP/+/WFgYIAVK1agvr4eHz9+xJw5cyAqKsp4zqyECid49+4d5OXlSbpcbW0tkVTb2Ngwfr+hoYHjRRfrAmjz5s3o3bs31qxZg1mzZkFQUJBRTWratGlQU1ODgoICbGxseGLqS+PJkydwd3eHmpoa2aAAzMXk5MmTeTYe0Kb/Xbp0IdWJaFRXV+PIkSNQUlLiyoy/LToipuiNXktLC3x9fdGvX79/fNHODTo61/Lycri6ukJRUbHdzWxJSQnPr/PNmzeYOXMmhISEGJ5rzc3N8Pf3h5KS0k8x7WQlpuhUvubmZp6kZrNixYoVkJCQQHp6Oh49eoQ5c+bA3t4eISEhZPF69uxZzJ49m+F9xE376enp6NmzJ6Kjo8m9+/DhAxsxdf36dUhJSXWauKD7AKsC59mzZ6ipqUFWVhY0NTVhYWFB5pa24827d+9IGl9nwTq+PHv2DO/fv8fHjx8BtEaQBwwYAHt7e2zbto3Rbm1tLU98LpcsWYLAwED4+voiIyMDQCt5wqpUbWxshI+PD8OQn5eorq7GmDFjwM/PTwx4nz59iqioKKirq0NbWxtOTk4/VEW1PdBjLa282rx5M6ytrWFtbY1Ro0bBxcUFpqamRAXNLYqLiyEpKUn8AWns3bsXQ4YMQUBAAHmmNLZs2QJdXV3y7LkB6zM6fvw4XF1dERgYyEbc8EqVT4Mmpnr27EnWoTU1NThx4gTU1dVhaGiIsWPHdpq0aIuSkhIEBATg3LlzpEqasLAwqSZL48OHD4iJiYGwsDDxMgU4J4j+LZw4cQL8/PzYuHEjw2O2oaEBkyZNQrdu3aCtrQ0LCwtISEhwTI63RUxMDBQVFaGoqAhlZWUoKysjJycHQGvwUEBAAEpKSlBUVISuri7q6uqQnZ0NdXX1H06HTEpKIl5RrO/f27dvISQkBIqiSAoX0DrueXl5YcSIETwh5NsG4o8ePYqIiAh0794dI0aMwLhx4+Di4sJIj/8VQd+r06dPIzQ0lKRBNzU1ITo6GhRFITExEffv38fly5dx69Yt3Lp1i+O01o7WVYWFhTAyMkLfvn2JrQyNjx8/YurUqWxrBW5Si3+Dd/hNSvEQ69atg4SEBG7duoXs7GxcvHgR0tLS8PDwIItc2iB76NChJFrF7cb+n8DOnTshLi6O7du3s6UbFhYWIiIiAjY2NoxIA683RatXr4aoqChu3bqFZ8+eITMzE1JSUggMDGQsPl6/fo3a2lqe5GIvXrwYwsLCOHnyJB48eIDY2FiYmJhg6NChZPPw8eNH5Ofno7i4mOM2Hz9+DFVVVUZqDA3WwfLkyZOwtbUFRVHQ1taGrq5upxUCrBNAU1MTysrKYGlpyaas+OOPP6ChoUE8CgoLCxEXFwchISGuIpCsyM3NZfNVa2xsxNmzZwl5y4kJa0e4evUqdu/ezfDkuXLlCiQkJDBgwADy2bNnz7iqBMc6Wbad/LKzs+Hi4gJvb29GylHbcYBXG/xdu3ahe/fumDBhApsCoaamBrt370ZQUBBHxElHBsTtEVOjR4/Gs2fP4O/vz+i3vwIxxXqODx8+xN27dxkppJWVlXB0dISqqiqbIX57v8ELFBcXY9q0aQxiytvbG5qamhxVEuxMu1OnToWIiAgOHjyIQYMGQUtLiyep2S0tLfj+/Tt8fHxINT2g9d7t2bMHZmZm2LBhQ7vf5cW1tkdM0YopSUlJMhZyOia9e/cO/fr1w507d0i0n97cZWVlQVJSEsHBwYyILTcb+fj4eAZ5NmPGDCgqKkJJSQn+/v7kej58+ECIqR07drC1yY3KeMGCBZCSkkJ0dDR8fX1BURRjrqmoqEBSUhJ8fX2hr6/PkyAA3T5dsIH+rZqaGowaNQr8/Pw4c+YMgP8FOz5//sy1nwmtxjIyMkL37t2xYMEC8nxzc3MhIiLSYeXGzqKoqAgWFhYICAgg3imLFi2CgIAAHj9+jC9fvqB///5wcHBgFJzhpRqA9RklJyejb9++CAgI+OFqhZyitLSUjZiqra3F7du3MWjQIAQHB3OkdmuLhIQEaGtrk3508+ZN+Pv7Q0REBCEhIbhy5Qq+f/+OiooKTJ48GcLCwoy1xa+C0tJS2NjYkHT6+vp6fPv2DUeOHCH7lAsXLmDbtm3YvHkz10o7Grt27YK4uDju3buHkpIS5OTkwNvbG7KysiT16s6dOzh58iSOHTtG5pZp06bB2Nj4h5RaSUlJEBAQQFJSUruG96dOnYKQkBBGjx6NM2fOIDMzE+7u7jAwMOBYfcs6/q1evRqBgYGwtbVFdHQ0QxF0/vx5jB8/HgYGBqAoCkFBQZ1q57+I48ePo2fPnli+fDmD4G9sbER4eDgkJCR4UimS9R6fP38ee/bsQUZGBumbeXl5MDAwgIeHBxsxReNXEIP8v4bfpBSHyM7OZlsEjxw5kuTL0igoKICQkBCmTp1KPtu8eTMcHBwwdOhQjnPd/0mcP38ekpKSbEQEa8Waly9fEmJqy5YtP+U8Bg8ezKhSAbSakgoJCSEgIKDdVCBu0kiqqqrg7OzMUCIBwJo1a6CiooIRI0a0W1GGk81nZmYmLCwsGAvG48ePY9y4cZCQkEBgYCApu1xRUYHDhw8zKkb86OAaExODfv36MVLgvn37Bl1dXRJRZSVHzMzMGKlm7969Q3x8PCiKwsGDBzt9nW1RW1sLJSUltntcWVkJU1NTUBRFKtxwi2fPnhHVUNuIFE1MhYSEcO3nxPr8N23ahKioKISEhCA5OZk836ysLEJMnTx5ksMr6rjdtti0aVO7lZIA5vPuTN89f/48lJWVycLw74gpZWVl8PPzQ09P76eSJrwG63XMnj0bysrKUFdXBx8fHzZs2EBI48rKSjg5OUFDQ+Onb8povH37FjExMRATE4OiouJPJ6RoFBcXIyYmBhRFQUNDg6s22+tzzs7ObHMpAPTr1w+enp6dP+FOIC0trV1iys3NDYqKigz1UGdx/fp1eHt7w8jICHx8fGQMpceYe/fuQUJCAv379+eaPHjw4AHMzc1hZ2eHV69e4fbt25CTk8O5c+ewbt06DBgwAOrq6sSb8cOHD4RgZCXLuUFRUREWL15M1EN1dXVYsGABunTpQsiZT58+ITQ0FCEhIVyl+KelpTECLllZWZCQkCCqC9bKosOHD4eQkBCuXr3K1fW1xZcvX3Dw4EGsWLGCzSz406dPsLW1JfM4L0BXXgsICEBUVBSkpaUZBRc+fPiAkJAQGBgYcJVa+1f9vS0x5eHhATs7O56sbVl9jp4/f84IXpWVlSEiIoJBTNHgNv2TbreyshIBAQGMwgpqamrw9/eHo6MjzM3N0bt3bzx79gxv3rzB1KlTQVEUT5/xP4GSkhIoKSnh+PHjaGhowJ9//glbW1v06tUL4uLiHW7quUV8fDzCwsIYn1VUVMDR0REODg5s48Dz588RHh4OcXHxH1I0FhQUwNTUlK1ia0NDAwoLC8n6/dSpU1BTU4OioiLMzc0RFBTEkyBLfHw8ZGRksGTJEuLPFRISgq9fv5I+VlVVhTdv3rBZcPyKePv2LQwNDRnVaYH/jR/Nzc0YOnToX1Ze7ixiY2MhLy8PNTU1aGlpQUFBgcw3eXl5MDIygre3NwlC/MZ/G79JKQ5Al5I8e/YsYxFlb2+P0NBQchy92Vu2bBnMzMwYrP7OnTthYGCAUaNG/WcHItZyxUOHDu0wikgProWFhRg1ahTU1NRw/Phxnp0HbYgdFBRE0qyamprIpLFixQr06NEDw4cPJ1VgeAVPT0+MHTuW7fOQkBAICgoiPDyckaPOKdLT08HHx0ciCOPGjYONjQ3c3NywZMkSWFhYwNnZuV2D285Mmtu2bYO5uTkiIiIYxJS9vT1js0dLz6OiothK/7558wZz585lKzH9d2hPxt/S0oKYmBjY2dmxpSFFRkYiLS2NqwovrIvphoYGHD58GNLS0oiMjGQ79tq1a6AoCn/++SfH7bEiLi4OkpKSiI+PR3BwMMzNzTFlyhSSspKVlQU3NzdYWFhwHTlivc709HQkJSUx0jaAVo8NiqKwfPlynqRRPH/+HDo6OjAwMCD+AX9FTKWlpcHf35+rjee/icTERMjIyBClKJ0KNG/ePDK2V1ZWQkdHBwMHDuS4Hdb7wvpud7QxfPv2LaKjo+Hi4sIxOfT48WPSL9v2jY5+69WrV9i6dSvPvAJzc3NRU1ODlpYWjBo1ilQVZT2fZcuWwd3dnevUGPo3Hzx4gNTUVGzfvp2h7G2PmPr06VO7QYjOgn4PdXR0GCXcWYmpPn36wM3NjeN0PRqZmZnw9vaGvb095syZg5UrV5K/3bt3D4MGDYKqqirZILx//x6zZ8/mSQQ5MzMTFEVBTk6OcZ3Nzc1YsGABunbtSsao8vJyRqp6Z9DS0oL379+DoigMHjyYPKP379+TCqN0OhLd3+7fv4+uXbuCoiiebLh/hKScPXs2tLW1edKHWJGXlwd3d3fw8/OTNHjgf+/j+/fvMXz4cI5SZFiNgts+l/b8ooDW9MFJkyZxrQylf/PEiRPQ1taGhoYGpKSkMGXKFPL+08SUoKAgScnkJZqbmxEREUHK2BsZGcHOzo6s7c+cOYMZM2aQay0qKkJ8fHyn10b/BYwYMQLi4uKQlJREYGAgIRYsLS0RERHxU9ocO3YsdHV1yb/pPpaUlAQtLS2Gn1NNTQ2uXLmCoUOH/rAK7vHjx1BQUGBUJKTTW4WFhSElJUWUt2VlZSgsLERJSQlPsiweP34MbW1tXLp0CUCrSp+fn59NKdm2jZ+Rdv9P4dmzZ5CXl2f4Kbe31hw1ahRX7wh9z/bt2wcJCQncvn0blZWVePDgAUaMGMHYS718+RJ9+vTBlClTOG7vN/45/CalOISvry9kZGRw5swZMkHu2LEDsrKybIa369atg6WlJSOlDGgdeH9WiVhewsrKCqNGjQLAPsDQ/3737h0aGxuRl5eHRYsWcbWo/asqhqxGpXTbmzZtQkBAAKSlpTF58mSO2uzouqKjo6Grq8sW9Vy4cCHc3Nzg6uqKpUuXcr3J//DhAwYPHgw+Pj7IyclBSUkJSUlJZAF7+/ZtUBTFFhHkBAcOHICZmRlGjhxJjBXv3bsHcXFxokSjn4GNjQ0ZzFmvkVOProsXLyIuLg79+/fHwYMH8e7dO5IeY21tjRkzZuDChQuYOHEiFBUVOa4ylZOTg8rKSrbP6+vrceDAAfTs2ZOhXqSRnZ3Nle8Z/d89e/ZAVVWV3N9Tp06hS5cu0NPTw/jx44mE+9atW5g4cSJXC3jW78bFxUFWVha2trakAEF2djY5Zv369ejevTtXxBtrBDwvLw9mZmbQ1tb+IWKKxq9ESLW0tCAvLw8+Pj5kbD9+/DjExMQwePBgUBSFhIQEkhpQU1PD8fiXmpqK+Ph4lJaWMj6n1Vgd9ZMPHz5wvJDes2cP1NTUsGXLFkZa2h9//EE2pX83vnHyPNsq0CwsLMjG8vPnz5CTk4OnpyeeP3+O6upq1NTUwNHRESNGjOh0W+21e+zYMfTp0wempqZQVFSEgYEBbt68STYFaWlpEBQUxIgRI7jeKLCOD2lpaVixYgX69+8PFxcXxmaafr63b9+GmpoaxwQGa/87ffo0/Pz8ICIigoULFzKOy8rKwqBBg6ChocEwfm37G5ygtLQUsbGx6Nq1K8N/jP7vokWLQFEUI4DFzTh48+ZN9OrVC2FhYeS+lZSUwNvbG1JSUgyfnJcvX2L48OGYNGkS4/MfBf08O1Kzsfbt27dvIyYmBqKiohz7Vf0dXr16BQ8PD3h7ezMIQG7UHvv374eTkxPD+xBoDahWVVWxHd/eGMEtMZWZmUkqopWUlJAKvaNHjyZB0q9fv2LQoEHo3bs3SbPjBejr+fjxIxQUFNCzZ084ODh06D3Daar/Pw36umgLjNTUVNTU1KC2thaHDx/Grl27UFVVRfpMWFgY5s2bx9Uat6M0u/Pnz0NPTw+rV69m3LfMzEzo6OgwKkEDrf24Myq4rKws6OvrY/369SgqKkJ4eDhR/+/Zswfz5s1D165d2SpwApz3Xfp7165dg6GhIYDW9YKgoCDJIikvL+eZGvW/ALpv3L17F7KysoSUYh13bt68ybWC8Ny5c4x1zqxZsxi2G8D/1KHOzs5kTfr+/fvfqXq/CH6TUp0E68Dp4+OD3r1748yZM2hpacGrV68QFhYGBwcHpKamAmhdXHt7ezPSgn4FDxVW2NnZkUgRwL74+P79O8mvZwW3ZeyLi4uRk5NDlFJAK8MuICCA9PR0fPv2DRUVFfD390dycjIOHjwIiqIYXi+dbfPDhw/48uULITQaGhqgra0NS0tLPHz4EBUVFWhoaEBwcDD27t2L0aNHQ0dHhye+YAUFBUhPT8e2bdvYPEuysrJgYWHBVeU51uvct28fzMzMEB4eTn4zOTkZ4uLiMDIygr+/P2xsbKCjo8OzRdaxY8fAx8eHgQMHwsPDA7KysggMDMTjx4/x6dMnzJkzB2pqalBTU+O4TDYA4tWira2No0ePMiT/QKuC8a+IKaDzC0vaOJbuqzt27MDcuXMB/I/AWLduHWbMmAExMTFMnjyZbXHL7biwcuVKhj/XoUOHQFEUHBwc8PDhQ/LeLl68GPb29hwtMvPy8kBRFJYtW0Y+y83N/Vti6lfDyZMnsXbtWvLvkpISJCUloba2Fjdu3ICcnBzWrVsHAKRMeUxMDGOT2tnxb9euXRATE8P8+fMZpbZXr14NCQmJHzLi7OwzTU1NhZCQEI4ePcpQfH748AFWVlYIDw//6Z6Hc+fOhbS0NE6dOsUwYC4qKoKKigp0dXWho6MDKysrnnkOXbp0CRISEsTc9vXr16AoCgYGBrh06RJp4+jRo+jduzdPKjCdPXsWiYmJZGy/fPkyAgIC4OLiwki5unLlCmprazm+723VoUDrYt7BwQGKiopsauL79+/D3d2dqPs4eXf/qgjA2LFj0b17d5I+wboOSkpK4np+aW5uJtd58+ZN9OjRA+PGjSOEKisxdeXKFRQVFSEhIQGenp5cpXmlpKRg7Nixf1k9Lzk5GS4uLrC3t+eJx9FfgU7l8/T05Fp5u3//fvTq1Qt79+5lBCEuXrwIPT09HD58GEDHwTxe4MuXLxgyZAjxlisuLoaqqir8/PwIWUwrCb99+8ZRFcO/Q3NzM+rr6xEdHQ1jY2NGsOBnmPH/bNDnnJKSAhUVFRgaGsLMzAx9+vTB3bt3GcfSazJxcXGOiFsa165dg7OzMyNVlj6Pb9++ISoqCs7Ozpg3bx7Ky8tRWFgIb29veHt78+Qejxo1CsrKyhAXF4empibS0tLIXFpWVgZFRUVs3LiRqzbKy8vZgqAFBQUwNDTE/PnzISwszLA1uXnzJhwcHDr0n/wV0N6zaWlpgZ6eHkO1TSMmJgZRUVEcE8dlZWVQVlaGtrY2aXvGjBlQV1dn2y/t2rULioqKbPP2b2Lqv4/fpBQHYH3ZvLy8GHn8WVlZZJOipqYGHR0dGBkZ8bSC1z8FeqG5YMECiImJEaINYG7a37x5A09PT66ryrAubOfMmQNDQ0MICQnB3d0d+/fvR2NjI8rKykglEE1NTSgpKUFHRwf19fW4ePEi1NXV2VQGP9rm/PnzYW9vD1lZWURERJDyxmVlZTAwMIC6ujp0dXVhYGAANTU1AK2bOh0dHa7Kmf5dn6iurkZAQAC8vb15umFISkqCiYkJRowYQTYqr1+/xsSJEzFp0iTMnj2bZ6lW7969g56eHmPyz8zMhK+vL4KCgshmtLGxEW/fvuXqfp45cwYhISGIjY1FWFgYtLW1MX36dEb59sbGRuzfvx/8/PxcS9N37twJiqIY3lAVFRX48OEDSkpKYGxsjOXLlwNo3ezLyclBQUGBLLY5HRPOnj1LUh7pzR+tSEhNTYWoqChWrlwJNTU1ODg4ICsri62SFidtL1myBD179mRUYfy/REzRVbR0dXWJ8SsA0iejo6MxbNgwopCdNm0abGxsYGtry/GzfPLkCWRkZNhUCS0tLcjKyoKPjw8pgsCr+9rc3IwhQ4YwPONYcejQITg5OXFV9vvv8ObNGxgaGuLIkSOMz+nx5vv379izZw8WLlyIDRs28GQ8qqmpQUJCAubMmQOgNe1cRUUF48aNg729PdTU1HDp0iXyfNtThXQWKSkpEBcXx/jx4xmBhUuXLiEgIADOzs5ISkpCQkICunfvzjEJxto3li9fjpkzZxJS4ezZs/Dw8ICNjQ3bJvPFixdcKwOA1utct24dVqxYgdzcXEIYRUVFoUePHmzEFA1unif9W8ePH8fq1auhra0NiqIwYsQIorQtLS1FaGgoKIqCpqYmxMXFOfJ9o9sqLi6GgoICW3GQtigqKsK1a9e4IjU7g/z8fPj5+cHa2pqRstQZlJeXw97engRVWNHU1IQRI0YgMDCQfNbS0vJT1rU1NTXYtm0bCgsLUVpaCkNDQ0RFRQEAVq1aBYqiEBYWxrU5/Y/gwoUL6NatGyFWfqV1fFvcvn2bYbj/+PFjktZP49y5cxg8eDCUlJS4rrKXm5sLJycn+Pr6MshSmiD49OkTJk2aBD09PXTv3h36+vowNTXtsIjKj4L1e/fv32coCGkUFhbC1NSUrPU5wZEjR+Dq6gozMzP069ePfP7lyxeEhYVBQEAA06ZNI5/X1dXB398f/fv3/2XXSKzKqDVr1mDTpk1kbH/w4AHk5eVhb2+PzMxMZGZmYsqUKRAWFuaKhGtpacHNmzehr68PY2NjtLS04N69e9DW1sb69esZAcHr169DT0+v0wKF3/j38ZuU+kH8VUqKh4cHpKSkcO7cOQCtk/q9e/ewbt06HDlyhAy+/3VZb0e4d+8etLS0YGlpyZaaWF5ejn79+nFMmLSHefPmoU+fPjh27Bg+fPgAW1tb6OvrY926dWSiunLlCvbs2YN9+/aR+zp16lRYWVkxykz/KGbPng0JCQkcPXoUKSkpcHNzg5aWFoOI27VrFxYvXoxVq1aRNiMiItC3b9+fIhuvqKjA6dOn4ePjAwMDA44madZjT548ib1792L16tXktw4fPgxTU1OEh4d3uEjnNLrA+o6UlJRAQUGBrf9kZGSgd+/ePDP7BlrVPMbGxiQdJTMzEx4eHnBzc0NISAiePn1K+si2bdvg7OzMcd9tbGxEUFAQKIpCt27dCKlAX/uNGzegrKxMJuPs7GyEhIRg+/btXL0vN27cAEVRMDc3J2TFxYsX8fHjR2RnZ0NNTY0ofeiUh7ZpqNwsrOlNAauh5YsXL2BmZgZdXV1CTP2Ki/cbN26ge/fusLS0REBAAGOxXldXBw8PD0RGRpJr69evH+7du0eO4eSas7KyoKSkxFDMsCI0NLRdbztu0NTUhP79+6Nv3764cOECamtr8e7dOzx58gTv3r3DjRs3oKKigg0bNqCiooIYRvMSjx8/hri4OKmeyvpO1NTUtOsdxU16LY3Lly/j2bNnqKiogI2NDUlPf/z4Mbp27Qp5eXmeGbHeu3cPoqKi2LlzJ+Nzegy+f/8+QkNDoaKiAi0tLQZ5zimmT58OaWlp7Ny5k6GAy8jIgJeXF2xtbdv19OBmTJo2bRokJSXh6uoKMTExGBsbY8mSJWhsbER9fT3xYKPLhHOK9s7x3Llz6NGjBzZu3IijR49i48aN6NGjB8LCwhgp4JmZmTh37hxXtgkXLlzA+vXrMXbsWK69zX4GXrx4gQEDBjD8oDqD0tJSyMvLY+bMmWQcB/5Hyt++fRvGxsaE9GovTZ5XoAmnrVu3wsHBgaihtm/fDisrKygpKXGc4s8aoPmRMXv48OHo27cv4578iti9ezdJgS4sLISCggLGjRtH/t7U1IQ3b95g165dPKuy15GKjx4D6+vrUVVVhWXLluHhw4c82zP91VxRUVEBPz8/uLi4cLzG3bJlCwQEBJCYmIiFCxdCRUUFkyZNIn+/cOECrKys4ODggCVLlmDDhg1wc3NjKH5/VWIqJSUFwsLCsLOzg76+Prp164aZM2cCaE2PNjc3h5qaGlRUVGBlZcWT4i/Nzc24desWtLS0YGVlBaBVLWVgYID58+cjNzcXhYWF8PT0RN++fX/J9ef/6/hNSv0AWAeNPXv2YNKkSZg0aRIjSkbLw8+ePcuzhfR/CSdOnICSkhIUFRUxY8YMZGZmYv369XB0dIShoSHPBtisrCyYmZkRgu/KlSsQEBCApaUlNDQ0sGHDBjbJ/atXrzB69GiIiYlxlN529uxZ6Onpkep9Fy5cAB8fH2xtbaGpqdmuaXtOTg4mTpwIcXHxH5blt3dvOrpfDQ0NWLFiBdzd3bmuSgS0mtUrKyvD2dkZhoaGUFBQIIuD/fv3w9zcHJGRkWwSbm6RmpqKjRs34unTp1BTUyNVbFjVhjY2NhgzZgxP2125ciXMzMxIGtSnT58gISEBUVFR6Ovrw9PTE9u3b2e8q5z23S1btsDR0RF//PEHKIpiqD5u3LgBPT09LFy4EM+ePYOvry+GDx/OsakvDbqSi6OjI/z9/Uk6BdDqYefq6koUg/v27UN0dDQGDx7M1TjU9rsrV65Ely5diGKqpaUFL168gJWVFcTFxbk2af43ERcXB0dHR4SFhcHOzo6hClu+fDkoikJwcDCMjIygp6fHceloGo8ePYKamhr69++PMWPGIDIyElOnTsXQoUMRFBSEAQMGgKIojBo1CiEhIe1WGuUE6enpCAoKgrS0NBwdHaGrqwsJCQkoKCjAxsYGFEWBoijIysrC29ubq7ZY3y96s/n582f06dOHkSpJ30taCcjtxoR+JtevX2cEGYDW+cXExISQxrdu3UJYWBi8vLx4Vhl39+7d8PLyAtDqf5OcnIyAgACYmppi06ZNAFqj6q9fv2akL3KKjIwMyMvLd0iU0ubn6urqPPO0PHbsGGRlZYmHXn19PSZOnAg7OzusX78eQOu1h4aGwsnJieN26D6Un59PCg4AwPjx4+Hv78849vLly+jRowfCw8N5trkGgAkTJpD08J+pIuQG3JJl8+bNg7y8PLS1tdGvXz8YGxtDQUEBSkpKMDExAUVREBMTg7KyMv744w+uz5e18MDu3buxadMmhqpiypQpMDc3J/+ePn06Vq9ezXGK69mzZ7FhwwY2FeRfpQAuWLAAQUFBv+xGlz7v+Ph4eHt74/3791BUVMTo0aPJ344cOYJZs2YxKmvzCqzEFKtqiS5U4O3tzUaO/QyUlZUhNTUVnp6eMDY25th3befOnejWrRsjoDpu3DjMnTsXRUVFJKXs5s2bmDRpEvFIjIiI+GWLvdDIz89Hnz59yPxVVlaGffv2gY+PD7NmzSLHvXr1CkVFRRwJBYBWJVZGRgYAMO7Z3bt3oaysDEdHRwCtWS70uGRoaAhzc/NfnvT7fxW/SalOIDY2FrKyshg7diymTZsGiqIQHx9P/u7r60uMzn91EooG68R06dIlhIeHQ1JSEoKCgrC0tERUVBRPB9iSkhLs3r0b9fX1uHTpEiQlJUmEWV9fH3p6epg/fz4jtSI1NRUDBw7k2G+poKAA06dPB9C6oJeUlMT27dvx8OFDqKioQE1NjahR6DaTkpJgaWn5w22yDozPnj3D7du38f79+7800M3NzWWkXHF6f3fu3InevXsTk9WTJ0+CoiiGZHnfvn1QUFBgM8LlBHSfycvLQ7du3bBjxw4ArYt5UVFRBonX3NyMvn37klQ2XrWdm5sLd3d3Ij03MjKCm5sbqqurcezYMYSHh8PGxoar8tj0f0tLSyEnJ4eEhAQkJiaCoigkJycDaE29HDt2LDQ0NCAjIwMrKyuepfIOGzYMTk5OCA4OhrOzMyl7HB8fD01NTXz48IFEA+kKM0DnFl9nzpxhRP7aI6a6du1KiLiWlhY8ffoUERERv9QYSD8LelxJT09HWFgYHj9+jHHjxsHKyopR2Wrt2rUYMWIEJk2aRN5Lbq/33r17WLp0KZydnbF48WKsW7cOCxcuRFxcHNkIu7m5ISgoiKeL2dLSUlhYWODw4cNoaWlBSUkJw9tj0aJFuHjxIs+KV2zYsAELFy5Efn4+6urqMHLkSDg7OyMlJYUc09TUBA8PD56ZmqekpEBSUhLjxo1jVPPcu3cv8UxpamrC7NmzMWbMGJ5VDgNaSX+KorBjxw6SxhIREYGIiAhISEjwPMVg9+7dMDc3R2VlJXlmbceatLQ0TJkyhWfv6Nq1a2FiYoKamhpy7759+4YhQ4bAzs6OHFdZWcl1Ok52djYEBQXJhggAhg4dCj8/PwCt10q/x8uXL0fXrl0xZMgQnla9mz17Nrp06UKCLP9XwNpPbt68CS0tLRw9ehQPHz7EjRs3cOPGDRw+fBhycnJYsmQJli1bxrOxKCUlBbKysrC3t4eXlxcoiiLp6NeuXUP37t3h4+NDTPs5TQXasWMHJCQksHTpUoZyeMmSJYiKisL37987nJvbzv3/ZRQUFGDBggWIiopCeno6uaYrV67AxcUF4uLixLqAvp7Jkydj2LBhPy0lsj3F1MePH+Ho6Ag1NTWuC0qwPpeOntHq1avh6emJyMhIjvcudKXmtoSsnZ0dFBQUICkpid69e2P16tXkPNoqCn8VQmr37t1swQtardRWpbhnzx7w8fG1axzfWVy6dIkExaytrREeHo7jx48TBei9e/dgbGxM5pe6ujqcOnUKt27d+uWzk/5fxm9S6gdx4cIFKCsrk6oCqamp6N69O5ungIWFBVkc/V8B6wRdW1uLL1++ICcnh6GE4NbUnEZjYyO+fv2K5uZmDBo0CLGxseS3+/fvD2VlZUycOJFxTjU1NT88iXY0UVVWVqKxsRF+fn6MymTe3t7Q0dHBsGHDGMc3NTX9sO8R67nOnDkTGhoaUFdXh7KyMqZMmcJW2a8z5/0j+PPPPxEXFwegNV1PWFgYmzdvBsCsHpSZmcmzTcr169dx4sQJIucFWp9TUFAQhIWFsXHjRuzduxfTp0+HqKjoTymhPHz4cFhZWcHIyAhOTk5sUVBOfZVY02FobNy4EUOHDkV+fj4mT54MiqKIeqm6uhpPnjzBzZs3eTJZ0tHh/fv3IyoqCnfu3EFwcDAcHBxw8uRJfPr0CTIyMpCRkYGqqioj9bMzqKmpQWJiIhQVFUn/Adjf9djYWEhLS7ebLvIrEFNnzpzBokWLGIvGhoYGGBgYID4+HrW1tYiKioKNjQ1WrlzJOIYGLzxxgFYfJ3l5ebaqXsnJycRPhQYv762/vz8WLVrEuI4PHz7A1dWVkVLIbZuxsbGQkpLC3r17SX/Jzs6Gn58fTExMEBERgXnz5sHe3h76+vo8WVTSHiq7du1iU9k2NjZCT08PEhISMDMzg4iICFceKvSzpOcj+t9Tp06FhoYGRo8eTVRu1dXVMDAwYCiauAHdVmJiInr37k0+p+9hc3MzLl68yKYa6uwzvX37NrZu3YqjR4+StPUNGzZAV1eX9Fu6zefPn4OiKDa/yc7OZ/Txjx49goCAAGbMmMH4+9GjR8HHx0fUU/S92LlzJ8zMzNC7d2+O0rxYK7AVFRUx5pBx48aBj4+vXSX1rwz6mouKimBkZMRWMfDly5dwd3fHy5cvyWedeU/bIw6ys7MhJSVF1tOFhYWgKAqzZ88m55Oeng5fX1+Eh4dzbBp/9+5diImJsXnYAa2klKamJiEvWcdl1nP+FZRSjx49gpycHJydnWFiYoIuXbqQwNSXL1/Qv39/yMvLY9++fQBaleQzZ86ElJQUWyEEXoMmpry9vZGeng53d3fo6OiQ+bQzfenkyZPYvHlzh/YZHY0zeXl5XKnV8/PzSYCBtqQYOHAgNDU1kZmZiadPnyIsLAyCgoKkr7L2m1+hDwGt+6LevXvD1NSUQeo/ePAAXbp0IeQTfT1v376Fqqoq8TrlBq9evYKNjQ3Mzc3h5eWFSZMmQVRUFGpqaggMDMSaNWuwZ88eyMvLw83Nje2e/gprz99gx29SqgO03bDu2rULrq6uAFoJKUFBQTKBVlRU4NKlS+S7v0IUhcb169eRlZXVbhWajqor/MhnfwfWe3T58mVcuXKF+IrQf3d2dmZURxsyZAjOnj3LcbSK9finT5+ybQa+fPkCFRUVkqpDlxo+evQoV8bQNFauXInevXuTvhIeHg4JCQmODUnbQ3vnFxwcjOjoaFy7dg1CQkIkwtzS0oKEhAQsWLCAcXxnBnP6nrJ+p7m5GXZ2dqAoii2lor6+HlOnToW+vj40NTVha2vLk1zz9s7p7du3kJeXh62tbYdpFp19nrQ/U3x8PFnQAa0bNXV1dWRnZ6O5uRmTJ09Gly5d2l38cjJZXrp0iSjOaJSUlEBOTg67du3Chw8fEBwcDHt7e5w6dQpfv37FunXrsGnTJo6igWlpaZg0aRKam5uxfPlyaGtrIyYmpt1ruHnzJuTk5H5aufOfCdqbi6IoGBsbY+nSpSR1+OrVq/D19cX79+/x6dMnREZGwsHBAfPmzftp53Pnzh3o6enh1KlTpB9XV1fD09MTw4cPJ8fxelE7adIkqKqqIjk5Ga9evcKzZ8/g4+MDGxsbni3ujh07BgUFBUaKMH0dL168wKpVq2BmZgYfHx+eKnA3btwIX19f1NfXt6tqq62tRUJCAjHn5hanTp2Ci4sL/P39MW/ePNJm29S8GTNmQEdHB58+feKonY6eS25uLpSUlDBlyhRGPykvL4e7uzvbONIZ7NmzB5qamhg8eDCjAmdRURH4+PjYqpk+ePAA+vr6XFXvot+Dx48fQ0BAgBHoAFpJ5WvXriEiIgI6OjqMtL64uDhs2bKFrTrTj4DVQN3KygoKCgpwc3NjFMaYMGECT3yy/qswNTWFm5sbKisrUVlZiY8fP8Lb2xvu7u5crXOLiooYxPupU6cQEBAAoJWQkpeXZ3jo0e8O6zvMCQ4ePAhNTc0OfbD8/PwYAZhfEY8fP0avXr0wc+ZM1NfX4+PHj3BycoKUlBSKi4sBtK4d+vbtCz09PUhJScHR0ZEnpuY/ivz8fPj4+ICiKI4JqZ07d0JSUhJz5sxhECbx8fGwsbFp9zt/5Q38o6B/Izc3F56envDy8oKFhQUMDAwYAcvPnz+jZ8+ef1sM4b+O4uJi6OrqwtLSkvSfyspK+Pn5YcCAAYx1X11dHUxNTXmmIM3Pz0dQUBB8fX3x6NEjfP36FRcuXEBgYCAcHR3Bx8cHBQUFUBSFyZMn86TN3/h38ZuU+hvQm9m0tDQEBQVhz549EBQUZJT3zMjIwKhRoxhKgV+BmNq5cyf69OmDVatWMcqNh4eH4+DBgwB+PqMfGxsLERERKCsro1evXqTduro6DBkyBDY2Nhg9ejScnJygr69PFuLc3N/Y2FjIyMhAREQEpqamuHr1Kurq6lBfX4+wsDDY29tj2bJl6Nu3L2xsbLiWbLe0tKCxsZGw+0Br1I9VsVRfX8/RwrkjrFy5kmw+0tPTYWxsjG7dujEmSHpioVMXOwtWf49Ro0bBy8sLY8aMwefPn5GXl4d+/fpBSkqKKMFY79+HDx/w9etXNkUIL1FVVYXg4GAMHjyYfMZNf66urkZYWBgoioKLiwv69esHAwMDpKeno6qqComJifDz80N9fT3KysoQExMDiqJw+fJlrq6DVcbs6emJzZs3k9SFQ4cOwd/fH1VVVXj27Bn69+8PJycnRrop0HkiLCcnB9LS0rh48SKqq6uxePFi6OrqIjY2lhxDLyQfPnwICwuLn2KE/bPx4MED+Pn5wd3dHW5uboiLi4OUlBSmTp2KFStWwNbWlpjXl5aWEs+nnzku+vr6QkZGiEmPDgAA3PZJREFUBuHh4fjjjz+Ibx+3vlUA2DxYWH/L09MTcnJy6NGjB8zMzODg4MCx30Z7WLp0KRwcHBgBkPbGVNZz4oVSavz48dDV1W23TV732du3b6N79+6IiYlB//79YWZmBl9fX0bK7qlTpzB69GhISEjwZBN48OBBzJw5E/PmzSPkyPz582FhYYHw8HDk5+fjwoUL8PX1hYmJCcf39MCBAxAQEEBycjLDs4juGykpKeDj40NUVBQuX76M7Oxs+Pj4wM7Ojuv1UHFxMSQlJRESEsL4fP78+VBUVERBQQHu37+PkSNHokePHnB2doadnR0EBQU5TusHWr2H+Pn5sX79erx69QpLly4FRVFknQKAKGN5Wazj3wargklOTg6KiorQ1dUlygVu/FoaGhrg4uICGRkZojbfsWMHzMzMkJOTAyUlJYwePZr89pkzZxAREcETg/Hr16+DoihMnDgRK1euxJIlS7B8+XJMnz4dY8eOhb+/P+zt7fHnn38iISGBKzL138CXL18gJCTEqI4IAAEBAZCQkEBJSQnx96msrMT9+/exevVqZGZmEsLhn8KLFy8wceJEjoIPd+7cgaSkJBsZ3NjYiPT0dDg7O+PChQsAfs4ehjWY4uXlBXFxcUZlaaCVtNLW1sbp06d53v7PBOt+hx7b3759S4pd0QTgkSNHYG9vj8DAQGRmZuL58+eIi4uDtLQ0I0WeW+Tl5cHT0xPu7u4MxW1TUxPS09OxZs0aDBo0iOvUz9/4b+A3KfUX2LdvH4nY3rp1C2pqaujWrRsjhaO6uhre3t6Maky/AjIzMyEiIoLjx48zokbNzc2YMGECDAwMOK7e8ldgvUfPnj2DtrY27t27hwcPHmDu3Lno0qULGdxLS0sxYsQIBAQEMAYdbhRSaWlpZKJ48OABHBwcoKWlRfyVrly5gtDQUBgYGCAgIIAnbQKtqVC0KujatWsMYrOurg7r169nS3HgFFVVVRg6dCiGDBmClpYWFBYWIiQkBIaGhtizZw/q6+uJEsLMzIyjTQprOoWEhAQCAwPh7e0NMTExODk5obq6GsXFxbCzs4OKigpJe+CVn9KPfp+upNa26h+nePXqFYYMGULSfObMmQM/Pz+oqakhJCQEenp6JK3h48ePWLduHdcb65cvX8LR0RGurq5wdnbGxIkTISEhgTVr1mDVqlVwdXUlxqE5OTlwdnZGdHR0p9uh72ljYyMaGxsxc+ZMTJkyhVzLokWLoKuri4kTJ5Lv1NbWwsfHB76+vr8EEd8e7t69i9DQUHh5eeHIkSN48eIFwsPD0b9/f1AUBTs7O0IYf/v2jVG1qTP4OwKGlfiZOnUqXFxc4Ovri+nTp3OsGrp69SohfhMTE3Ho0CG282b9zQsXLiAlJQX37t3j2suOBmsKG2sEm1VleerUKbY0Zl7Np0ePHoWWlhZOnjzJSNmoqqrCkCFDeLZpePbsGZKSkoj3WF1dHY4ePQpTU1N4e3ujvr4eTU1NWLNmDXx9fRnK4M7g8uXLJCWE9rkcMWIEhg4dCmFhYaxfvx7V1dXYsGEDjIyMwMfHBx0dHbi5uXFMMhYVFcHKygqrVq1ifN72GZ07dw7KysqQk5ODuro6g9jkVlljYWGBgIAA4kWzePFiSEpKMp7f169fkZqaismTJ2PGjBkcpyLRgaTo6Ghi3Pvp0ycoKCgwxj8a06dP/6UIDNZn8XeBoU+fPmHWrFlISEjAvn37eJKC/vTpU1hYWEBHRwdfv37F69evYW9vD1FRUeIjxzpuBAUF8SyAdeXKFZIyFhcXh+HDh2PAgAEYMWIEDA0NiYeNnZ3dL5cCVFpaioiICAgKChJSZsmSJejatSu0tbUxaNAgKCoqIjY2lqz9/wv7ls72pZMnT0JNTa3dMbSqqgpOTk4MD8ifAfq+vXz5Ep6envDw8GAo4/39/eHg4PBL9SF6XMjLy0N0dDT69etHFLE0MWVubk7W88nJyQgODiaKN3V19Z+itsvPz4enpyc8PT1x9erVDo/7TUz9+vhNSv0F5s2bBzk5OZKvvG3bNlAUhbi4OKSlpeHixYtwd3fnWRT7n8TcuXNha2vb7t9evnwJDw8PnlV4ag9LlixBfHw8Qyrd3NyMxYsXM/Lf2w4y3CyEDhw4QCJjrHB3d4eGhgYyMzPJZ+Xl5YxNOqfYu3cvuYbBgwdDRUUFvXr1YshbP336BCcnJ4b6jlscOnQIIiIipBrSo0ePEBISAiUlJVKu29HRkSslxJMnT9CrVy/MmTMHQCtBceXKFVAUhcWLFwNoJXHs7OygqqpKJjJuNicPHjwgEb2/+53m5mbU1dXBxsaGkXrGLV6/fg0PDw+oqKiguLgYNTU12L9/P8zMzKCgoMDw2qDB7cY+Ly8PwcHB8Pf3x/nz53HmzBkEBwfD29sbFEWhX79+5BkWFRVxdI/bphdlZmZCXl6ejAMfP37E6tWrIS8vD2tra0RERMDNzQ1mZma/fKWTO3fuYODAgbC1tSXptaWlpZgzZw5RWvyIiWpHYJ0XDh8+TCrKtP0baz9pm1Ld2Xf09evXMDc3J1WNunbt2iER0tFvc/I8S0tL2TyVAODixYugKAp79uxhHF9WVob+/fsTRRqnoNsqKSnB27dvifq3pKQElpaW8PPzI/4/5eXlmDt3LuTl5XliNP7mzRuYmZlBTEyMUUmwrq4OycnJMDExYQQ5OK1MuXHjRggICODJkyfIzMyEoqIiSf/et28fevbsie3btwP437O7e/cuY0zgZCy6f/8+pKWliadmW7D2k2/fviEnJwePHj3iGbEJ/M+LJiAgAFFRUaTacdv2/6qCWmfh6+uLtWvX4v3795CTk2NUKktOTmar5vgrgPVeLVu2DLNnz+6QvOtoPcvpRpv+vebmZrx48QK2trawtLREeXk5EhISICEhgSVLlhAPr7i4OIiLi3NM4HbU/sqVKzFgwAC2vy9fvhyRkZFs5/or4evXrxgzZgz4+PgwfPhw9OnTB+np6fj+/TuKi4tx5MgR+Pn5QVhYGFZWVmwVCH8FpKenQ05ODlFRUVi7di3mzZuHZcuWYd68eZg+fTpRG69YsQLTpk37aSow1sI6NDGVnJwMPz8/aGho8FRp/LPBGmiWkpJCv379MHjwYHTr1o2NmDIxMWEEmp8/f46cnBxS8flngB7/vby8SGDiN/7v4Tcp9f+jo4i1iYkJo1z9unXrYGtrCwEBAdja2sLf3/+XGnhoLFy4EFpaWli6dCmePXuGixcv4vjx48jIyCB590OGDMGdO3eQkpLC09Syuro6REZGgqIoBAUFMf7W3NyMJUuWoHv37mzkETeEX1NTE2RkZEBRFMOrgIaHhwe0tbWRkpLCSE3gZkHy7ds3CAoKYvbs2QBaCRUbGxsYGBgAaL2er1+/wtvbm+Oo3F/dk/79+8PX15dRfv3ly5dITk7GgwcPuNowVFdXw8rKClJSUoxzqayshIGBAcOn6tWrV3BycoKoqChXJc937doFHR0dLFiwgGFsv3DhQkYlwbY4ffo0z9/N4uJiuLm5QUZGhig8SkpKSIrBz1jI5ubmwsvLCx4eHqRaWE5ODiIjI0lef0fmrH+HzMxM+Pj4EIUAjZiYGFhbW5MNflVVFW7fvo2wsDCMGTMGiYmJv0x547/rA/fu3cOAAQNgb29PqifS4OZ5sn63oKAAEhIS8PHxYVSo+RkmqC0tLUhNTYWEhAT4+flx7do1AD83mpiSkgJ5eXkMHz6cTZ1YX1+PmJgYdO/eHWvWrMGLFy/w6NEjeHt7w8TEhKt3lL5nx44dg7a2NtTU1CAsLIwZM2bg06dPKCoqQt++faGtrQ15eXnY29tDSkqKZ1HdiooKLF++HGpqavDy8mL8rb6+HqmpqVBSUsLAgQM5bmPr1q3o0aMHKaCwbt06eHt7A2j1uRQSEmL4XLZHIHHaj/ft2wdhYWFClLb3rIqLixlpbdy22R7y8vLg7u4Ofn5+ooRoaWkhz3/WrFmQl5fH169fuXqPWlpa0NTUhMmTJ2PIkCFQVlbGqFGjyN8qKysRGRmJpUuX/ufHvY5AFx3Yt28f27zc0TPjVB3KSrCzjj90FWs7OzuUl5djypQpMDAwQM+ePWFpaQktLa2forzYtGkTREREGLYV379/h4eHByNF/VcJMrfF169fSVop61qMvp7q6mqUlJSgsLDw3zpFrnHkyBGMHTsWHh4eGD16NCZMmIBx48YhLCyMVG80NTWFs7MzT+aWv/t7bm4uvL290b17d+jp6XHkk/VvgdW3j5+fn/j20ZkzkydPJuKM4uJimJiYwMTEhKcVTX8E+fn58PX1hbm5OVdp2b/x38VvUuov0NzcjBUrVsDV1ZVREvPLly949eoVSktLeaKm+Tfw6tUrJCQkQFtbG9bW1rC2toauri6srKzg6uqKXr16gaIoItfkdoHXFh8/fkRcXBy6detGNi+sZuIzZ86Evb09TxYF9IBbX18Pa2trKCsr486dO2wLLxMTE4SGhnLdHivmzJkDf39/lJeXo66uDrt374aenh7k5OTg4OAAS0tLmJqack1srlq1CmfOnGGkXB48eBDGxsYk1aO9hSanG4aGhgakpaVBUlISQ4YMIZ8XFhaiZ8+ebNU38vLy4OXl1a6K6Edw7NgxCAgI4Pjx44yFZGFhIVxdXYni7q+q5PwMYsrT0xPS0tKEmGLdIP0M5Ofnw8PDAx4eHoRkoMHN5m/Dhg3o06cPm6F/Tk4O+vfvj2PHjv3l9//rhPyIESOQmpr6t+M0TUw5OTkhJSWFp+cQFxeH0aNHQ1dXF/z8/LCxsWH4jfGSjKJx+/ZtGBkZwdDQEAEBAcQj8Wc8r6amJsTGxkJdXR1JSUkQExPDqFGjsGTJEnJMVVUVli5dCiEhIfTp0wdaWlpcKzZpXL58Gfz8/FizZg2uXr2KTZs2QUNDA8OGDUNpaSlKS0tx9epVzJ07F3v37mWrQtcZtPesKisrsXHjRmhqahK1BY36+nqkpaVxvAk8dOgQKIpiKHP27NmDUaNGISUlhc3nMi0tDbGxsYyxkhs8evSIQQQB7Pdg2bJlCAsL++lroVevXsHDwwPe3t6MMXDOnDng4+PD/fv3O/2brFX2qquryQbs1q1bEBAQgIaGBlEBNDc3Y+bMmVBSUuJ4Pvu3sX//fsjIyDCq2H3//p3hBcMrMvHdu3cYOHAgoxgQ0OoxJyEhgR07dsDY2BjW1tb49u0bPnz4gKNHj+LBgwf48OEDT86hLaqrq+Hg4ABlZWXs2LEDK1euhJeXF88qfv4X8OnTJ0RHR6Nnz56keAc9vv6qZBvA7JeLFi2CpaUl2/Vs3rwZ06ZNQ1NTE8eKt9zcXPLO/928RLfx/PlzTJs27ZcJ1LGC9u1rGzgZNGgQjIyMoKWlBU9PTxw+fJgQUxoaGhxVNeUGz58/x9SpU385BeNv/Bh+k1Is2LhxIzw8PPDkyRNiBlhYWAhJSUkkJiZ2+L1f7eVgHaSDg4OxcOFCAP8bQOvr6zFt2jT8+eefKC4u5thDhW6DRkNDAyNiVlZWhvHjx6N79+7EF4J1U8xpxbu/qrBRV1cHHR0dGBkZISsri+23OX2WHX0vKysLvXr1IiRNfX09ioqKsHDhQixcuBC7du3i2qOhrq4Ofn5+UFVVhb29PbZs2UI2edbW1gyjb16ipaUFGRkZEBUVxejRo/HhwwcoKCgw/IxY7y+nCo2mpiaMGTMGYWFh5LPm5mby2wcPHoSoqOgPp/XxEsXFxfDy8oKcnNxPL6VMg1XGTHtJcQJaDQCAeObRlcBYn9uYMWPg7u5O/v0rLbRoODg4QFpaGhkZGX/bD+/du4dBgwZBR0eHa5N6Ghs3boSYmBiysrJQWFiIJ0+eQFVVFU5OTh0qpjgB6/fHjRsHX19f5Ofn4+jRo7CxsYGPjw9bJUpeqmALCwshJyeH+/fv4+XLl1i6dCksLS1hYWGBFStWkMhqcXEx7ty5wwgOcNqv6GuePHkym/L2xIkTUFFR4WnFRLq9GzduYOnSpYiLi8P58+cBtI7FGzZsgIGBARsxxSm2bt0KiqIgJSUFDw8Pcp/OnDlDgkd0RVXgf9Uax44dy7PN58ePH2FrawtDQ0OcOXOG7e/V1dUYMGAA5s6dy5P2/g70GOjp6YmHDx9i6dKlHBNSNI4fPw4tLS2Ymppi4MCBhHA6ceIEunfvDk9PT3h7eyMkJATi4uL/WKWyn4EVK1YQlV1+fj5Wr14NNTU1mJqatqsk5wYFBQVk7GH1AxMXFyfvzfPnz2FoaAhTU1OeGJr/CB4+fEiepY2NDaPi5389yPKjoFP5evToQe71r0xI0aCv4cSJE7CysiI2FUCrKs/d3Z3h/dbZa969ezesrKywYcMGxvy4adMmRlusaLvu/NXWSR359gkICCAxMRE7duyAtrY21NXV8eLFC7x+/RoWFhY8NTXvLH61vfdv/D3+nyalWEmPmpoaHD58GKampiSqTEfh9uzZA2Nj4/+TcsE5c+YgODiYIcOsqKiAq6sr8XUCOHv5Wb+zZs0a+Pv7w8XFhXgQAa3eHuPHj0ePHj0YPis0uCGkNm7ciHHjxsHb2xuXLl0iUY/a2lpoa2vD2NgYDx484IqYYo00Aq2+KdnZ2YzPYmJiYGVl9Zd57Z1ZBHV0ftevX8e8efPAz88PLy8vrFy5EqdOnYKBgQFX5MXfnUtGRgYkJCRAURQmTZr0t+fJSRt+fn7EFP/bt294+vQpnjx5gqKiIty8eROurq5YuXIlPn36hKysLK7ba+//O0JxcTHMzc3h7+/PVbudAa9lzGVlZZCSkmKk39DXXl1dDU1NTYbi5VcB6/MLCgoixsh/R0zduHEDs2fP5tnmZOzYsYQwoc+poKAAsrKysLOzY1MRcItPnz7B0dGREF4tLS04cOAASTmngy5RUVHEZ4lb0PcqNjaWUdGzvr6eqG6FhYUxf/58tqpJvBgrRo0aRapONTQ0kHF9xYoVkJSU5GmlT1qd5OTkBCsrK1AUhSlTpuDjx4+ora3F+vXrYWZmxlYtrrNYv349+Pj4kJycjJs3b0JPT49hnrtu3TpQFIXly5fj8uXLuH37Ntzd3WFkZMRzn8vbt29DQEAApqam2Lt3L4BWQvPFixfw8PCAhYXFP7oRy8/Ph5+fH6SlpdG9e3euCKnc3FzIyMhg1apVmDt3Ljw9PaGqqkoUsLdv38b06dMxZMgQLF68mM2U/7+M169fk/6ydu1atLS0YO3atVBTU8PIkSOhra2NwYMHIyEhAUuXLoWGhgbPTdtpEjEwMJDND4zGixcvoKKiAmtra54HB//qHXj37h2j3/5KZMKPpH1//foV48eP50kl4P8avn79CnV1dVhaWmLOnDlYs2YNXF1dGT6/ncWRI0fAz8+PI0eOkCAd0FqJUk1NjeyL/i8SIqy+faNGjYK0tDTjPX3z5g0oiiJVw3+ld+U3fg38P0tK/dXG88CBAxg6dCh69OiBUaNGITo6Gq6urozKCv9XcPDgQWhoaGDq1KnIzMwk3jLclI5uixkzZkBWVhazZ8/G5s2bQVEUxo8fTzYJ5eXlmDBhAiiKIqatvGizd+/emDBhAoYOHQpJSUksXbqUpGHW1tZCT08PMjIyyM3N5aiNmTNnwsnJCUDrguDZs2cQERGBmZkZJk6ciJKSEjQ2NiI7Oxt6enpkcOfG04W1ryYlJWHBggWIiorCo0ePSMpBTk4O4uPjoa+vDz4+PlAUxVMT9fbO6cyZM1BQUGCk8vFy0n7z5g0xTPf29oaBgQE0NDSgpqYGLS0tUBQFiqLAz88PT09PjjdiJ0+exLZt29g8NlirdrWHT58+/eOLFG5kzCdOnEBwcDB27tyJ06dP4+XLl7CysmIY8LNiy5YtGDJkCE9NhP8psD6zwMDAHyam2vs+p22Hh4cTtVlLSwvq6uoAtHr1dO3aFYGBgbh37x7H7bBiyZIlcHBwYKtY1dTUhIMHD5L3yMXFBXJycjxfWB49ehRiYmKkbVNTUzg4OODNmzdYv3499PT0EBQUxPNU17Vr14Kfn58Yl9PXdfz4cejr65Py851Be+f38uVLKCoqYvv27eTvhw4dgoSEBCmoUF5ejqVLl8LBwYGjd6a5uRnFxcWgKIqsO+rr63HmzBno6+vDzs6OvPcLFiyAsrIyREVFYWlpCS8vL577XNJtXb9+Herq6hAREYGRkRH09PRgZWUFOzu7f8VbMzc3FwEBARwZYbM+2+fPnzO8hO7fvw8vLy8oKSmR9QGr1+SvgmvXrkFHRweZmZnEY4hOt5k9ezYGDx6M7du3k1TWrKwsmJqacpXa2hHa8wMDmOuEvLw8jlNcWZ/n9u3b8eeffyIhIaHDcb69tK5fRUXE6g3Fio7evS9fvmDKlCn/mJqbF/i7dQ19rR8/foS/vz80NTXh5OSEyMhIjhVvNTU1GDhwIENl1dzcTM5l5cqV6N27N5nb/q8o6ljRkW9fQ0MD3r17B0NDQzbPzd/4DV7h/0lSinWwW7t2LYKDg+Hg4IBp06YxKlGcOnUKY8aMgY6ODiiK4jrq+V/FokWLYGpqCoqiYGZmBj8/P54tMI8dOwYNDQ3cunULAHD27Fn06NED3bt3x4ABA8jg/vXrV6xYsYKrDRL9XJOSkqCsrEzk9VlZWaAoCn369EFCQgJRhdXU1CAsLIzja2xsbCTnS6ugnj59isOHD0NRUREWFhaIiopCWVkZgoOD4eLiwvG1tUVsbCz69OmDMWPGwM3NDQoKCli8eDGRGjc0NKCmpgYzZ85EaGjoT49oNDU1kVQ+uqQzL3+b/q+rqyuWLFmC6upqVFRUoLS0FK9fv4aLiwtWr16N+/fvc/w8d+zYATExMSxatIiRJz916lQ4Ojr+0G/8W9GzH223qakJDQ0NmD59OgIDA2Fvbw8+Pj6i9pCXl8fOnTtx9OhRfPz4kRjKv3v3Dmpqati1a9fPvAyeoqPUUU6IqR9FR8/h7NmzoCiK7f4dPHgQgwYNgoqKCgYNGsR1+y0tLdi7dy+kpKSgoqJCqrzR739zczOuXbuGmTNn4o8//vhp6SpDhw5FZGQkdHV1YWdnx/A2Kigo6HRKOH0cPb61pxCora2Fj48PFBUVkZ+fT/4+ZcoUWFhYdLriHX2OpaWlyMrKImkbT58+haqqKh49esQ4jwMHDqBLly5ElVpVVUUUaZyCJsfpc2loaMCZM2eIYor+/OXLl3j27BmKioo49rn8kWqmQKunE+1nFR8fjyNHjnCdgs4NOHmH6Xt08eJFJCYmIiIiAv3792cc8+DBA3h5eUFNTY3nyqF/Ci0tLfD29oa0tDSEhITYVMQ00dbS0oLq6mr4+vrCw8Pjp81jrH5grOptbttjfQ9nzZoFISEheHl5QVRUFFZWVr/s8/srnD59Gh4eHhgwYABDxczLSqr/BWRkZHSYKstqOVJWVsawB+FkLKqvr4eNjQ2cnZ1RWlqKxsZGvH//Hm/evEF5eTlu3LgBLy8vHDt2DLW1tTyp3PpfxF/59tFVp3/jN34G/p8kpWjMmDEDMjIyWLBgAY7+f+ydZVwVWxfG10EwQUAkJFRaQkKQRkRBKREUW+xEUGxAxO7CLmyviY2d2F3X7tYL0kjD837gd/Z7BvBeCYWj8/+izJlzZu+ZPTvWXutZu3ZBIBCgZ8+enB3VlJQUvHjxAqGhoT81a1FF870B6HseYh8+fMCdO3fw+fPncom3P378mC1AcnNzsX37dpYiW2i0WLt2Lc6cOQNJSUkMHTq02MS9tNcVjWnOzMzExo0bsXTpUgCFu+SysrLYsmULJk+eDCkpKcyYMaOYQGlpF2Wi5+/ZswcCgYDTeWdkZCAyMhIuLi5QUlJi2UCOHj1aquuUxL59+6ChocEyrp05c4Yjgvu9hV55Fgw/ou9VUFCAo0ePQiAQYNCgQWW+Vknk5eUhIyMDbdu2LRZGlpKSAhcXF44nY2mf59WrV6GkpFRiKNP58+fRtGnTChe+rgyEXhuinl8vXrzA/fv30aFDBwgEAtja2qJevXrQ0tKChoYGnJ2dcf36dWzYsAE9e/ZEampqZVbhhyjaz4lOVgHA29u7wg1Tou/G7t27sWjRIhw5coT1hxMmTICUlBSWLVuGz58/48uXL/Dy8sKaNWtw7tw5CASC7+pVfA9hPUXrK8z2Ji0tzXkPv/dOVKRBSngPoqKiUK1aNXTs2JFtPJRXv+/Lly9QU1NjHqcl9UV///03PD09UatWLTg5OcHZ2RmysrLFQqr/C2HZHj58CHt7e7i5uaFDhw7Iy8vDjRs3ICUlhatXrwIA83oDAGNjY44XSFkpqW6i47LQMOXg4FAhCSxEzz9w4MB3Q+H+rf8XN6+BmJgY1KxZE5aWljAyMkLdunWLtZPbt2/D1tYWJiYmnJDQqk7RjVdFRUXo6enh0KFDxQy7aWlpWLRoEdzd3WFmZsb6w59lxBDVA6vo1O5fvnyBj48Pbt++jby8PMTFxaFp06YwNTXFw4cPK/RalcmlS5cgJSWF4cOHw8vLC+bm5hyBanF7F0URbXf37t1D7dq1MWjQoO96ef1bX1kWYmNjoa2tjcaNG8Pd3R0mJibQ1NREw4YNoa2tzTzya9WqxdE5/d34nm6fOGvp8VR9/lij1O3bt6Gvr880N86fP48aNWogKiqKc17Rhbw4GKZEO+T9+/dj7dq1iI2NZa6+P6KZU5YJSXR0NBQUFDB58mS2w5uSkoLXr18jISEBzZs3x6xZswAU6hxoaGhAIBAgNDS01NcSsmPHDsjJyTEjFFDYmX769Anv3r2DmZkZFixYAKBwwiInJ4fatWtj48aNAMo2eIkO+J8/f0ZWVhZ8fHygoqLCmWQJf3v16tXw8vIqc2raomVcu3Yt007566+/ULduXSZ0m56ejqdPnxYLjSnrIC38XlJSEnJycphB4nu/l5+fj5MnT5Y5JPK/WLhwISQlJREdHY0nT57g3r17cHNzg5WVVbkmYjExMdDQ0ChxRzUrKwudO3fG8uXLy1P0SufGjRuoXr06Dh48CIArdA4A69atYyFfqampuHLlChYuXIiwsDC2oy7qgVJVEe27FixYgM6dO8PMzAxr167lZFH19vaGoqLiD4mf/xei78OYMWOgpKQEHR0d6Ovrs7DHgoICzJo1CzVr1kSjRo2grq4OY2NjZGdn48aNG9DS0uKU77/Yvn07+vbti6dPnzKPNiHZ2dlMG6NoKMKvWFgXFBTAzMwMAwcOrLDfTExMRKdOnSAjI8M0uEqqS15eHqKiojB+/HhMnjy51Po/wt988OAB5OTkEBYWhrdv33LaVadOnWBoaMgJc8rOzoaFhQXWrFlTluqVCqFhytTUFAYGBhWWHXfcuHHQ09PD/PnzkZyc/N3fLU8ikqpAcnIyQkJCsG7dOgCF4XteXl5QVFQsZry4e/euWHkGiD6PsWPHwt7eHk+fPkX79u1hamqKnTt3cgypQKHhaujQob8sa5hQD8zGxqbCJBsWL14MXV1dtGrVCh8/fmTHk5OT0bRpU5ibm/8WhqnHjx9j48aNWLhwIYDCOd+WLVtgbGyMDh06sPPEUe9HtO1OnjwZYWFhUFFRgZSUFHr27PnLnl9aWhrs7e2xdOlSfP78Ge/fv8fTp09x9+5dNGnSBAsXLsTRo0fF8h6XhorU7ePh+RH+CKNUSZOms2fPwtzcHEBhiJloSuWkpKQK8WipDETrOnr0aCgrK0NNTQ1GRkYYPHgw8wKr6F2w7Oxs+Pr6QiAQoHXr1pgxYwYnne/jx4+hp6eHa9euASg0EA0ePLhc4Vapqanw8vJCjRo1YGtri7lz53I+v3btGgwNDZlWy4MHDxAYGIgVK1aU+ZonT55EeHg4ACAgIADt27dHbm4ucnJy0LFjR9SvX7/E3b/4+Pj/1CX6USZPnoz27dvj6tWrkJGR4RhL1q9fj9DQUE4YalkRlvfgwYNo3bo1TE1N4ezsXKkeQ1lZWRg+fDgkJSUhJycHc3NztGrVqtzhpkeOHIGBgQH8/PywdOlSTJ8+HdOmTcPEiRMxevRo2NjYQEFBAfPnz8fw4cPLrHtRmTx//hz+/v7MEANwjRRXrlyBjIzMd/VZxE17IzQ0FCoqKoiIiMCMGTMgLS2NkSNHcoThfXx8IBAIWHhxWRC9L/fv30f79u1x69YtZGVlYe3atWjRogXat2/PQkIfPHiAPXv24MCBAxxx8GbNmnHC3P6NlJQUaGtrQ1FRkWV6ExrahWRlZWHHjh2oVasWRowYUeb6lRZhnTZs2AArK6tSeyn9GwkJCejXrx9q1qz5XcNUbm7uD9/Hf7uOg4MDJ3ED8P9nLQzj0NfXx+nTpxEbG4sJEyagfv36P0WPpyRyc3Oxf/9+9OzZs0I8I6ZNmwYFBQVcuXJFLDbfysqdO3eYJpYw6y8AvH//Hl5eXqhfv75Yae+IIvouCPWkhB7cOTk58PT0hKmpKaKjo9mCumhmyl/lZfP48WP4+fnh7du3FfJ7f//9N5o0aYK6desy44XwfU1JSYGZmRlUVVUrNVtYeXn9+jXMzMygoKDA0QnNyMjA1q1bYWxs/FvIjMybNw+ysrKIjY3FzZs3sWXLFsjKyqJPnz4V9m5+bw6Tl5eHhIQENG3atJiOcHx8PNq0aYNTp06xY7+7Yao8un08PKXljzBKlcTDhw/RtGlTzJw5E3Xr1mXZBIBC900nJyexm5iIdrL37t1jbpcJCQlYuHAh7Ozs0K1bNxYuV9GGqWvXrqFJkyZwcnKCubk5Zs6cyRYHHz58QK1atRAcHIwzZ86gbdu2aNmyZblCBYHCzEqysrIYOXIk7Ozs2O4RAJYVbt26dbh27Rq8vLw4ui2lnXxlZWUhODgYlpaWcHR0hJycHKeN/JdhCijdYv7du3e4du0ali1bhosXL7LJ2/Pnz6GiogKBQMARps7MzISnpycGDRpUYUaDw4cPo3r16pg+fTpmzJiBoUOHQiAQsPtcUdcpbVuMjY3FgQMHKiSlvJADBw6wpAa9e/fGkCFDEBQUhF69esHd3R0CgQBOTk5wcnISW/f4ly9fYuDAgZCTk2OG9/z8fOTk5OD9+/fQ0NBguiPiqkEBFIpta2lpsbrcunULAoEA9erVQ//+/Tk7ruPGjSvT8yya0XL79u1o1aoVfH19OaLImzdvZoapoguiJ0+eYMCAAZCXl2fhuD9CXl4eQkNDsWrVKty6dQvz5s2DnJwcunfvjhkzZnCMCtu3b+e8s2Xl1atXzAP2R+7Xo0ePfkqShX8zTGVnZ6NPnz6Ql5dHenp6mdvww4cPoa2tjdjY2O/+xvXr19GjRw/UqFEDOjo6MDIyqpDQhtJ4uIo+h/L0SZ8/f0aLFi2YgO27d+9w+vRp9O7dGwsWLCgW/irO5OTkoEePHhAIBMxTSsiHDx+Yofpnefv+CqKjo9GjRw8EBwcD+H+IaW5uLry8vGBmZoYxY8bAzc0NMjIylTaelVU8/nvv5OPHj6GhoYHWrVuzbMui3t7+/v5iO3YDhX3f9OnT0bBhw2IaaJmZmdi2bRvU1NTg7+9fSSUsPwUFBWjXrh0CAwM5x/fv348aNWqgV69e+Pvvv8t1DWG7+7fxITg4GLKysmwN9erVK7i5ucHOzk6s21BZ+J03KXiqFr+9Uervv//Grl27MGzYMEyYMAEPHjxAcnIysrKy4Ofnh1q1anGyrmRlZaFdu3bw8/MT20XZ9u3b4ebmhm7dunFEoleuXAk7Ozt0796deUxVlFEhLy8PiYmJGDhwIDZv3ozJkydDV1cXM2fOZB5TO3bsgLS0NJo0aQJbW1vW0ZWlDMLvZmdnw83NDcHBwQgKCoKZmRkiIyPZecIFn1B4vLyda25uLuzt7SEQCDB06FB2XHifc3Jy4OfnBxUVlXKled+9ezdcXFygrq6O+vXrQ1JSEs7OzoiJiQEAREZGomHDhhg5ciTevHmDc+fOsfj3ikoFnpOTg06dOhXzFli+fDkEAgEOHDhQrt8XIvqeXb16Ffv378etW7dYu/mRepTnXRX97vTp0+Ho6FjsnI0bN2LkyJGcxZk49Q+ik6gXL15g4MCBkJWVLeYRamtri5kzZ/7q4pWbos/iwIEDWLJkCYBCTz9ZWVls27YN0dHREAgEGD58eDHR39IYNadPn84yyAmvHR4ezjJCFl3Eb9myBa1atYK9vT1LM52VlYUjR46gf//+uH//fqnrfOTIEcjIyDDPr8zMTEycOBECgQDm5uaYM2cOm7yfPn26XEbbjRs3wt7eHtu2beNoikVFRbHFX0ns2rXrp+wkJyQkoH///hzDVGZmJgIDA1G3bt1yZzL866+/ICkpWWKGLuG79O3bN6ah+Pbt2zJ7Z124cIF5s1S0Psr3KPq+ZGdno1mzZhgwYADOnTuHDh06wMrKCu7u7pCQkMCUKVMqvAyVSW5uLrp06QJ5eXnExsZyPnv79i26du1a6rDPqsKnT5/g7u4OeXl5dOvWjR0XGqby8vIwePBgtG/fHj4+Pj9dQ6qiKTpfOHjwIB4/fsz61YcPH0JVVRVt2rRh72TRuomzUSEhIQELFiyAjo4OJzQbKPSY2rVr1y/z1qxo8vPzkZubizZt2mDw4MEACuehwucVFhaG2rVrIyAgoMx1DAoKQqNGjZi22vfa/cuXL+Hj4wNJSUmoqqrC3Nwcjo6OYve+8PCIE7+1Ueqvv/6Cubk5bGxsYGhoiPr166Nu3bqYMGEC0tPTceXKFVhaWqJly5ZYtGgRVq1aBRcXFxgbG3OyFVV1RMVuc3JyEBwcjMaNG6Np06ac84SGKUdHR7i5uZU7xOvly5ec2H0AmDVrFoyMjAAUuoUbGBhwPKY+ffqEJ0+elNm7pajmSlZWFssk9enTJwQGBsLU1JQjNnv58mXcuHGj3BmChGEhw4cPR58+fWBnZ4eIiAj2uXCwysnJQatWreDu7l6m66xZswaysrKIjIzEpUuXkJ2djVWrVqFZs2bQ0NDAsWPHkJubi2XLlkFdXR316tWDqakpPD09KzQtd0ZGBkxMTJjml3ABnp+fjz59+sDHxweZmZkVpmcyfvx46OjoQE9PD3Z2dmjRokWZFuvl4fTp07C2tsbJkyfZsYyMDLi4uHB27sQhfO3s2bPYvHkz+1u0TQg9plRVVTmLMnt7e7a7Li6I9kHLli3D06dP8fXrV3z69AlxcXGwtrZmob1paWlQV1eHhIREuQSpHz9+zPoRoUdFfn4+IiMjoaenh379+uHr16+c76xatQrDhg3jjCk5OTnl8kIJCAhAQEAA+9vQ0BA+Pj4YM2YMXF1dIRAIOGF9Zen7hCGAmzZt4hhenj9/DoFA8ENaaz/bMHX8+HGEhISgVq1apRaLL4lLly6hZs2a/xqqvGTJEri6uhbT5ykNUVFRaNy4MSZMmMAW1QAwdepUzJkzp8y/+2+Itr9jx44xnZBly5bBzMwMNWrUwLhx43D69GkAhYu43r17i0WfVxRhme/fv49Dhw7h0KFDnDlEhw4dUK9evWKGKXEyWpSk7XXjxg106tQJioqK2LJlCzsu6pmUnp5ebk/1ymTcuHFQU1NjG3deXl6szT58+BDq6upwc3Nj3p3ihvDZPHz4EIcOHcKpU6fYRl1cXBzmzZsHY2PjYoYpceJ766t58+ahevXqzHtY+D7OnTsXbdq0Qb169TB16lQApZ+LXb9+HYaGhrC2tv5Pw1R6ejqio6OxevVqHD16tFKzjPLw/An8tkap1atXQ1paGlFRUSzsKT09HT179oSsrCzGjRsHoFAjKCAgAMrKynB1dUWfPn1+mdhjRSMMDUlPT8f06dOhqamJESNGsI4XKOzc58+fj8GDB5fL4LZjxw7IyMjAwsICW7du5YSltGnTBmvXrgVQqGtlaGiI2bNns8xfQkp7/Z07d0JaWhpdunTB5cuX2e89fvwY8vLyOH78OL5+/YqgoCA0a9aMCZyLUtrJ5vfKmJaWhlGjRsHa2ppjmAIKQx9ycnLKdH/Xrl2L6tWrl5gF7sSJE7C1tYWpqSnLHpiRkYEbN25whHgrst0OHz4c1tbW7B0STgDGjh1bokdRWVmxYgWUlJRY2GNoaChq1qzJ0fz4Fbx79w6WlpZwcnLCmDFjMH/+fLRu3ZrjgVbVEab3dnFxgY2NDbZv384+E23/Dx48QMeOHeHr68u8X27duiU29QQKd8qrVauGy5cvY8SIEVBQUODsoD579gwGBgY4duwYgMLwnMDAQERHR5c56YDoJHjfvn1QVlZmxov8/HzMnj0bdnZ2GDRoULHMokIqatEbFRUFe3t7JCYmwtzcHPb29khJSQFQWNft27eX+XkWFBQgJSUFbdu2ZTp6wuPCe7BmzRoYGRkV25woiwGjLN9JSEjA4MGDIRAIICkpWSEGKaDw3ikpKcHb25tjxCiq2RgSElJmY83Ro0dRp04dHDx4kGOYTEpKQs+ePdG9e/cKN44U3QQwNDTEypUrkZ2djbS0NMTHxxdL9tCiRQuEhIRUaDl+JdHR0ZCXl4e5uTmkpKRga2vLMfh17NgRKioqHJ0YcUF0jpGYmIi0tDT2jO/cuQM/Pz84ODhwtHGK9gfiYmwULefatWtRv359nD17FsnJydi3bx86duwIW1tbFlb96NEjSEpKit0mC/D/uu7ZsweNGzeGnp4emjdvDltbW5ZsRGiYMjMzQ9++fSuzuGWiqHF8z549uHHjBqu7r68v07hLS0tDZmYmvL29cfToUSxevBg1a9bk6NaWhvv378PMzAw2NjYlJoD6N8TJYM3DI278lkapjRs3olq1akzMtyh9+/ZFrVq1WGppACxttRBxWJiJdqInTpyAhoYGW9Snp6dj4sSJsLGxwejRozm7uaLixmUxnOTm5qJr166oVasWrKys0KhRI/To0QP9+/dHYmIigoOD0atXL3b++PHjUb9+fY7XRmlJTExEhw4dIC0tDVlZWfTt2xfm5ubYsWMHEhISMG/ePDb5ePbsGYKDg6GmplZMqLA0iN6bU6dOYf369Th16hTLxBMXF4dRo0bBzs4O48ePR1JSElq1aoU+ffqU+Bv/xcWLFyEhIYExY8awY0UzpO3cuRM1a9b8boanshoahe0hPj4eb968QUpKCgoKCnD27Fk0b94cwcHBnAxEAQEB6NixY7m1RoTeV3369GE7XwcPHoSMjAxWr14NoDBMpqjXSVn4r3sjujPZs2dPaGtro1WrVhgwYADrD8RpQvLixQu0b98ezs7O+Ouvv9hx0TqsWLECKioqxUKwqno9Rb1Khg4dirp160JGRqaY1sTdu3ehqKiISZMmISYmBp6ennBxcWGfl7aeouG/SUlJePnyJXr06IGmTZtiz549ALiGqaFDhxZruxW9CGzevDnTO0tISCjxnPKMZ05OTmjZsiWys7Px7ds3xMXF4cuXL/jnn3+wbds2eHp64saNG0hMTGRi7qVF+G4mJCR8tw7fe3+/fPmCyZMnV7gQ6549e1CjRg34+/tzNMi+ffuG0NBQNGrUqFwhXtOmTYOLi0uJ4dZ///036tSpw5mjFD2nPEydOhWKioo4f/58ibo+qampuHz5Mtzc3MTKIF+Uu3fvMlHo1NRUPHv2DCNGjICFhQXzlMzPz4ebmxu0tLQ4G3hVHdG2MGPGDNja2sLMzAytWrVi78KdO3fQqVMnjl6YuCGqmylkwIABxQwx58+fR+vWrTlyA2/evKnyY9n3OHXqFOTk5JjerTD0XFNTk/VHcXFxmDJlCuzs7MTKI0y07Y4aNQoqKiqoV68emjVrhtDQUBQUFODLly/o1q0bpKSk0LRpU2hpaUFPTw85OTk4ePAg9PT0iq3b/g3R8WP//v2YO3cuBAIBXFxc/tNjioeH59fw2xmlhOKqPXr0KKYfJDo4GRgYwMPDo8TfEIedI9HOMzo6GgEBAZCUlIS5uTnbKUpLS0N4eDhsbGwwduzYYgaE8tQzMTERPXr0QKdOnRASEoJDhw7ByckJbm5u8Pb2hkAgwN69e9n55cl4J+TixYsYMmQImjVrhoULF2LTpk3Q19eHn58f9PT0oK2tzXbsnz17hkWLFpX5mkXTZGtqarKwMk9PTzbpi4uLQ1hYGJo0aQJ1dXU0a9aszOKdV65cgZubG9q2bYv9+/dzyiJaHicnJ6YVURFtVfgb+/btg5WVFdTV1dGqVSuMHDmShXza2trCxMQEQ4YMQefOnSEjI1Pm0LqSBv4ePXpgx44dOHbsGKSlpdlELDc3F+vXr8e2bdvKtTASveaePXtw6dKlfz0vOzsbKSkpnD5EHBdmr169gqenJ5ydnbFt2zZ2XNhGjx8/DkdHxwox+v0qWrZsyfHcWLhwIQQCAerUqVMsDAcoDLNSVlaGjo4O7O3ty6xlt2fPHuZ1FhQUxDwFb926hd69e8PQ0JBjmJozZw50dHSKZQWtKITlF6YDF4ZhVdT4JTSIb9q0CTY2NqhXrx6aN28OBwcHaGlpQUVFBebm5hAIBFBSUoK0tDQnlPBHEb5zf//9NywtLbF8+XJOe/zrr7/Y4uN7i4afsfDMz8/HqlWrICkpiSZNmqBv374YOnQovL29oaSkVG5R89DQUFSrVg27d+/G9evXceDAAZw8eRLHjh3D9u3b4evri8GDB+P8+fMVmvH048ePsLKyYm3148ePiI2NRVBQEBYvXgygUJOtS5cuaNu2bYWGhP8qhO1E+G6IShW8e/cOAQEBaNGiBQtHzc3NLbNBtbKJiIiAgoICVq5ciUWLFqF169aQk5Nj+pPXrl1D165dYWBgwMLbxIXVq1ejffv2xd77YcOGwd3dvdhca/r06VBWVubo3gHi1XaBwrl7//79mZbbp0+foKGhAT8/P7Rs2RKNGjVi3vLx8fHfNeRXNYrOZW/fvg1HR0fcunULL168wMSJE2FhYYERI0aw8/bu3Ytly5Zh1apVbA42fPhwODo6Mq/g0jB27Fhoampi0qRJLDGRlZUVb5ji4akC/HZGKaDQrV5XVxfz588vJj4qnGCNHDkSlpaWxQavqk7RDnP06NFo3LgxZs2ahYCAABgZGcHExARnz54FUDi4RUREQEtLC0uXLq2QMggH+Pj4eHTq1AktW7Zku1n79u1DWFgYlJWVS9xFLmvIjJCLFy/C398fRkZGePjwIb5+/YqDBw/C0tISCgoKFXZNIfPmzYOamhrzQJs4cSKqV68Oa2trluo8OTkZd+/excGDB8sdc3758mX4+vrCycmJIyQufO7p6ekwMTHB+PHjy1ynkjhx4gRq166NyMhIvH//HmFhYRAIBCyM8OjRowgLC0Pr1q0xcODAMnsliLZfUa+WYcOGQVlZGXXr1kVUVBQ7HhcXh9atW5dL/6eogVHYNyQmJpaox/FfvyFuiBqm1q9fz45nZmbCw8MDnTp1Eqv63b9/nyPam52djRcvXmDo0KGQlpZmHrKi7/2XL1/w/PnzcoW49urVCwKBAF5eXpCXl2cC4wDXMCU0xufl5WHLli0/fUH04cMHNGjQALNmzfopvy8Un3V1dcXmzZuRmJiIZ8+e4e+//8ajR4/QuHFjhIeH49ChQ2Xu954+fQoFBQWMGzeO04enp6dDV1e3zPp8FcG1a9fg5+cHMzMzODo6Yvz48SyEprwMHToUpqamcHV1haurK+zt7WFpaQlLS0vUrVsXAoEAdevWhb29fYUtlr59+wYrKyuMGjUKp0+fRpcuXWBpaQlnZ2emtZabm4sbN278lJDwikb0vgj7MaEn5f79+6GpqcnalPDze/fuQSAQsHmSuPLlyxeYmJhwdKOAwr5KXl6eSRxcvnwZEydOFDvjzJcvX1iZRTMaL168GPXq1cOZM2c4Y9f+/fthZWUlNkaaf+P06dO4dOkSkpKSYG5uzoS/N2/ezPoFccoQLpSAELJjxw74+Phg4MCB7FhqaipmzZoFCwsLBAYGFmuvr169wuDBgyEvL1+mTdE7d+5ASUmJeaAWFBTg/Pnz0NXVhY2NDW+Y4uGpZH4ro5RoBzZu3Dg0atQICxYsKDErTvfu3dGlS5dfWbwK5+7du2jcuDFOnDjBjp04cQLt27eHiYkJ8wZJTU3FmjVrKnRCIuy0v379ii5dusDKygobN27khGGInldeRCceV65cQZcuXWBkZMR2/rKzs9kErKIysSUmJsLd3Z1N+A4fPgwZGRkEBgbC1tYWNjY2nLAOIeU1vF26dKlEwxRQGFrWqlUrHDx4sNj3fhShF4IwdC4nJwcDBgxg3ifx8fFQV1dHYGBgsTDPsmplFS3rxIkTYWJiwuohFIdXV1fHp0+fmFC1m5sbbGxsKmRRNGPGDNSvXx9Xr14Vu8l5eXn16hX8/PzQrFkzdO/eHfPnz0ebNm1gYWFRYdkafwWibW/mzJlo27Ytx8OhX79+kJaW5vSJoaGhHENHadrvlClTOBo7hoaGkJSULNH76datW+jTpw+aNm3KCZcEfv5O/ZIlS6CgoFBif1RehNpSysrKHKMmUOhl4+XlhatXr7JjpX1XCwoKEBQUBFdX1xI/P3PmDFxcXMqdBrw8VPTzE22DvXv3xrBhwwAU3ovs7Gzk5OSgV69emDZtGhITE9n5pX1HS2rrubm5mDRpEiwsLCApKYnRo0czPaV+/fphyJAh//kbVY2nT59i69atAAoz11pYWODr16+4f/8+5OTkMGnSJI5XzadPn2BqasoxdIgjb968gYKCAmceBBS2ExMTE6adKoo4jn1nz56FoqIiJwtk+/btoaSkhP379+PFixdISEhA69at4eHhIRZjmSj/Vt5Dhw7BwcGBySecPXsWbdu2Rd++fcUmQ+TIkSPh7+8PoLD9paWloW/fvmjQoEExbdK0tDTMnj0b1tbW6NGjB7s3SUlJ2LZtG7y8vJgAemmJjY2FnJwc3r9/z47l5uYiJiYG1apVg6enJ9LT08tYSx4envLyWxmlgB8zTL1//x6tW7f+oaxBVYU2bdoU83S6c+cO6tSpU2y379ChQ1BQUICJiQlLNS3kZxqmbG1tsXLlSk42wLLyX6mxr169im7dusHY2JiltRdNz17ea8bExCA1NRVXrlzB69evcevWLWhoaGDFihUACl3mhfH9FbVrLoqoYUoYyldQUAAPDw+4ubmVuZ5bt25F69atiy1eO3bsiPXr1+PDhw9QU1PDoEGD2Gf79+/HoUOHKmyiN2nSJCgqKuLYsWMcg8Ldu3dhZGQEVVVVaGpqwtraGs2bN6+Q8JH4+HhOCNvbt29x/PhxdO/eHdOmTfsjJiIfP35EZGQk7Ozs4O3tjcDAQLFK6lC0zcfGxkJCQgI9e/bk7ML2798fNWrUwKRJk+Do6AgDA4MytZ2bN2/Czc2NfTcnJwfe3t5o164dpKWlsX379mKZ127dugUvLy90794dwK8z9L148QK9evX6KQYEYR2Cg4Nha2vLDBivX7+Gh4dHhXjxjBw5Eqamprhx4waAwo2UuLg4pKWl4erVqzAxMWFGh8rQThF9jhX1TIWZTPv374/OnTtzPsvIyICrqysWLVrEjpUnSce2bdsQFhaGiIgIlln006dPxcYBBwcHjqi9uDBr1iwIBAIEBgYWyzi5YcMGCAQChIeH486dO4iPj0dISAjU1NSKCfRXZb7X7iwsLFg4P1DYl+fm5qJNmzYYNWrUryreT+X169cIDQ2FkZERxzDVuXNnqKurQ1FRESYmJjAzMytzeHZlISznxYsXERkZiS1btnDmI6tXr0bNmjVZWw0NDUWfPn3Eas5y4cIFNscQrsU+f/6MMWPGQENDg/NMgULD1IQJE9C/f39OP5aWlvbDWcNLev7Jyclo2LBhsU2lz58/o0mTJhAIBGIpGs/D87vw2xmlgJINU/Pnz2e6FJ6ennB0dBSbHaPU1FRs3bq1WPz869evYWVlhQULFhQT6GzRogUsLS3h4ODwU3bPhYgaprp27QpHR0csXLiwwiYERQegooap7t27w9TUFIcOHSrXdUQHvkmTJkFHR4fjGj1z5kz4+PiwRWhUVBS8vLwwffr0n9aOhIYpoWeUr68vDAwM2KSrrNn9HB0d0alTJ9YucnJy0KNHD3h7e0NLSwsDBw5k9zklJQX+/v6YP39+hdTz/fv3aNasGScjXFG2bNmCdevW4dChQxWWgjc3Nxe2trbo3r07Tp48ifbt28PGxgbt27dnKdD/VMSlHxRy//59JCUlASj0mqxRowa6devGMUyFhISgZcuW6NSpU5mMmkXDOqOjozlZ/fr06YM6deoUM0wlJycjPj6+UrxLhGX9Wc/z/PnzaNeuHerUqQNVVVUYGxvD0dGxXP2RkO3bt6Ndu3aoX78+7O3tYW5uDhUVFTRu3Bg2NjYQCAQQCAQwMTFB8+bNWcYkcWDv3r0cPbeiXL58GdWqVcPo0aMRGxuLkydPws3NDWZmZhViLB47dixUVVXRu3dv9OzZE3Xr1sXMmTPZ5+np6bh9+zbatm0r1qLm7dq1g6SkJAsHEtWv2bRpE5SVlaGmpgYDAwOoq6uXWxPsVyL6biUkJHA019avX88EooUUFBTAzs4OkydP/qXlLC8lbSwKn+Hr168xYcIE6OvrY9q0aezzM2fOYO/evdi7d2+FzRd+NYcPH4aUlBQcHBwgEAjg4+PDvPhev34NR0dHNGjQAG3btkXt2rUr1Wu0NBRdB2zfvh1NmjRh8g+fP3/G8OHDYWNjg+nTp3POzcjIKPOYVrQNCceo3NxcBAYGwsnJiW1yAP/fWL9y5YrYzYd4eH4nfkujFFDcMKWpqYmFCxeiVatW0NfXF0vxTgCcLHNAoSaFhoYG9uzZw4TMExIS4OfnhyVLlqBZs2ZYtWpVma5V0iKjJGOTaMhemzZtMGTIkDIbpU6ePMkGrNDQUCxdurTYMypqmHJzc2OuweXl9evX6NatGyf8BwAmTJgAHR0d5tnj4+PD0XApy4L3R7h06RL8/PwgJSXFabflmXTt3LkTbm5u8PX1ZYa3x48fQ0VFBbq6upzfDgsLQ+PGjZmoZnm5f/8+ZGRkWOp20XvxvcxH5Z2QCFm3bh3Mzc1Rs2ZNhISEMA/DcePGoUePHmIRplJeirY9cdhNLipSr6mpifXr1zM9wMuXL5domBLVFSnt+yJ6fkJCAmRkZNC5c2dcv36dHe/Xrx9kZGSwceNGvHnzBp6enmjXrl2J5a7KlFTO75X9+fPnOHToEJYsWYLDhw9X6CJQOG5FRUXhn3/+wa1bt/Dq1Ss8fvwYHh4e8PHxwbZt2/DkyZNyX+tXsWrVKggEApw7d67Ez0XF6hUUFCAjIwMzMzN4e3tXyBwlJiYGDRs2xJUrV9h1atasyQnDFIqqt2nTRuzmRaL9l5+fH1q3bo1q1aph3bp1xc55+vQpzp49i4MHD4qtqHl4eDisra2hoKCAQYMGsc246dOno0mTJrCyskJQUBBsbW1haGgoVsaZopnUli5diuHDhyMwMJB517x9+5YZpoTZeosiLm0X+H/bHDx4MPPCf/z4MUvEJJTguH79OsLCwhAcHCxWOlKi7+eTJ0+wc+dOuLq6cjbLP378yAxTosbykn7jRxAduxYuXIgePXrAwsICkZGRePnyJeLi4uDn5wcLCwv069cP69atQ4sWLWBnZ8e+K05tiIfnd0JsjVIludMXnUiLdiwhISEQCAQwNTWtkIX9r0K0TllZWZg5cybq1KmDsLAwdtzPzw+NGjVC3759MXPmTDg6OqJFixYAAHt7exZKUtbrPnr0CE+fPmVx2P9mmEpJSSmz/sWnT5/g6uqKZs2aoXfv3pCUlPyumKHobz98+LDMC0DR761duxbS0tIwNjZmO1HC6xw7dgyOjo7Q0NCAiYkJmjRpUiYtHtHrpaamIjs7m3lafK8O58+fx/jx48sdaiX83ps3bzBmzBg0atQIHTp0YJOc6Oho1KhRA87OzvDx8UHnzp0hLy9f5h3lku5LXFwcdHV1sWDBgmLl2r9/PzZs2FCmawkRvYcbNmxAYGAghg0bxjR+0tLSihnYnJycMHr06HJdl+fnIPo8t2zZgrlz50JSUhI6OjrYvHkzM0xduXIFtWrVQo8ePfDixQvOb5S2HyoqjH/jxg1cuHABOjo66NGjB8cwNWjQINSrVw/6+vqcsUVcEL2/Dx8+xN27d5l2iSj/dg/LO4EX/W0PDw8MHTqU83lGRga6d++OXbt2les6v5p169ahevXqP5w57+PHj7h27RpevXrF7kl55yhLly5lIvF79uyBjIwMVq9eDaBw/Ll//z6ys7Nx4cIFsRA1F0V4j27fvs02OYDC0PqihikAJbbrqo7o+7lkyRIoKSlhzZo1mDdvHtzd3WFmZsY0L8+cOYNu3bqhW7duGD58OHuO4rDADgkJgYyMDBOoDwkJgYKCAry9vaGvrw9FRUU2D3n37h3Cw8NhaGjIycIqTgjb7ocPH/DPP/8gLCwM165dY58/evQIRkZGcHNz4+j1ictGB8Dt14U6rHFxcTh8+DDatm0LW1tbZpj69OkTgoODoaWlxZImlZfx48dDQUEB48ePR79+/aCtrQ0vLy/cvn0bX79+RWRkJMzNzWFjYwNPT88K8fjl4eEpH2JplBKd+CcmJiIuLo7zuWhnKDogb9y4UWw1VITx5KmpqViyZAnk5eU5IUczZ85Ep06dYGlpia5duzKvEw8Pj2Jusf+F6P2bNGkS9PX1oaOjAyUlpX8NkxP9Xlk79osXL0JdXZ0zmf/esyq6UCrPYPL161fk5eXBzs4OAoEA27dvLzaZO378OObPn49p06aVacInWr45c+bA29sbzZo1w5AhQ37Y8FPedrtjxw62uLa1tUXdunXRoUMHJub84MEDDBkyBL1798aUKVPKLKQpWtfMzEwWbpOeno7OnTvDwcGB05Zyc3Ph7u6OHj16lKN2/0cYshIQEICxY8dCIBBwwhvS09Nx8eJFsQ9Z+VMIDw+HvLw8NmzYgDVr1qBFixZo3LgxNm3axAxTV69ehUAgwKRJk8p8HdE+Ze/evRwR4TNnzqBx48bFDFPHjh1DTEyM2IWOiNY1PDwcenp60NfXR7169TBp0iS8fv36l5dp+vTpsLOzw65du5CXl4d//vkH4eHhUFVVLWZsrMps2bKF0+fk5eX9q2GvNN5qP4Jo2NqAAQMQHR0NaWlpjtf0gQMHMHr0aI6HirgsyIT127NnD1RVVTFz5kxO+5g4cSKkpKQQFRWF1NRUzJgxAzY2NkhLSxML79Ci3LlzB6NHj+aEgT558gTBwcGwsLDgGDREEZe+6NGjR7Czs4Oenh7evXuHoUOH4ubNmwAKMym2b98e9evXZ8fevXuHoKAgdOvWTSyfJwDs2rULmpqaUFRUhJSUFJYsWcL5/PHjxzA1NYWdnR0L5RPHuiYkJKB9+/Y4c+YMO1aSYer9+/dYtGhRhRhR79y5Ax0dHY6m7smTJ+Hp6YkOHTpwvKhTU1MrbBOAh4enfIiVUaqoBT0iIgImJiZQU1ODr68vjh07VqLIYdFOThw6HtHJ4eTJk+Hr68sWQgkJCYiMjIScnBzGjx/PzsvNzWUhfJmZmQgPD0f9+vVLFe5Q1CClrKyMo0eP4tOnT+jQoQNq165dLANTeRGt6/3792FnZwdbW1vY2tqytOv5+fkVOiAfOXIECxcuBAAEBQWhV69eAArbioWFBXR1dXH16tWf4iEQGhoKBQUFbN68melBaGlpMZ2cn8XLly+hoaGB5cuXs/dk5cqVcHBw4HhMVeT7MW3aNLRp0waWlpbYuXMngMLdQScnJzRv3hzdu3fHlClTYGdnByMjo3J7gQGFqZQbN27MXN/37NmD6tWrcxZkMTEx6N69O9zd3cUuZOV3R1S7CShsL0LPKFG8vb2hqqqKzZs3IyUlBUChUbWsbUh0onr48GEMGzaMLRSEfZTQMNWzZ08myi2KOLahuXPnQklJiYWz9uvXD3JycpWiuZOYmAhnZ2doa2tDXl4eNjY2aNy4sVjp/6xevRoCgQAtWrSAkpISDh8+DODnGny+99vHjx9HnTp1IBAIWHgQAHz79g1t27YtV6h9ZXP8+HFIS0tjxYoVJYZ+C5ORWFtbQ1pamuNNVdUR1akTGtslJCSwZs0aznlPnjyBvr5+sSQ44sjz589hZWUFFRUVWFlZcRLIJCUlwcfHB4qKiuw5/vPPP8W0/8SFV69ewcDAAHPnzsW2bdvQvHlzODg4YM+ePZzzHjx4AFtbW7H08gOARYsWQVdXF61bt8bnz585nx0+fBhubm5wcHAolk2vvOPovXv3oKyszOaAQo4dOwY5OTnExsYW+464tSEent8RsTFKxcbGQiAQYOzYsQCAZcuWQUFBAcuXL8fWrVthbW0NGxsbrFu3TiwXBt9j/PjxUFFRwfbt2zlZh5KTk7Fo0SLIyclhwoQJnO+8f/8eHTt2RMOGDXHnzp0fuk5MTAzn7zt37sDZ2RnHjx8HULirKi8vDzc3N1SrVg3r16+vkEm26G9cuHAB9+7dQ2pqKs6fPw8PDw9YWVkxw5SQ8hpv0tLSMHLkSGhqasLV1RV16tThCEfm5eXBxMQEhoaGuHbtWoVMfIT1fPLkCczNzdkOzpEjRyAjI8MmmxU1MM6YMaOY8fDhw4dQVFQspm+yfPly1KlTB506deKES5alLKLPc968eVBWVsaECRPQo0cPCAQCpgPxzz//YObMmXB2doabmxuGDBlSJi9G0awtwu9t3LgRLVu2BFBokJKWlmYhKykpKbh+/Try8/Nx584dsQtZ+d3p06dPMXHez58/Q1tbm4njCw3vAGBgYAATExNs3ryZI35d2ucZGxsLBQUFfP36Fa9evYKZmRlkZWWZUSovL4+1lbNnz0JbWxseHh5ik5L7e+Tm5qJ9+/YsE+3evXshJyfHDBg/+70oafMoJSUF+/btw8yZM3HgwAGOTlhVZ/78+ahRowYOHTqE+Ph4DBgwAHJycjhy5AiAn7PwEf3NzZs3Y/78+VixYgVrr0uWLIFAIMC8efNw9uxZXLlyBa6urjA1NS1TCHplU1BQgOzsbHTt2hXDhg0DUDim379/HxEREZgwYQIz6hw9ehQbN24sZuiuyhw/fhxz587leD9FRUVBIBCgZ8+eLMRNSLt27SpMU/NXU3QO+fz5c3h5eUFKSorNyYTnJCUloUOHDhAIBJyNVnFqu0BhuOmIESMQEBDA6vb48WO0adMGrq6uxQxT4hYSLqSgoAAnTpyAvr4+6tevz3TcROtz5MgRWFpasmzPZXmWJc3Pb9++DWVlZXYvRa9paGiI2bNnl75CPDw8Px2xMUrl5uZiy5YtqFWrFsaPH49ly5YxnRigcFLSpUsXNG/enLmDittgVZRTp05BTU2NTU7y8vLw5csXXLlyhRmoIiMjIRAIiu2gCbUpfgRhilnR+/XixQssWbIE+fn5OHPmDFRUVNhuXNu2bSEjI4Nly5aVq36i1wsJCYGWlha2bNnCdj2PHz8ODw8PjsdUt27dEBUVVa7rAoXaRhYWFhAIBJwwSFF9JzMzMzRt2hQXLlwoU1sKCgoq9lxu3boFNTU1ZGVl4cCBA5CWlsbKlSsBFO5er1+/npNZp7Tk5+cjPj4e48aNKyaI+ezZMxgZGbH3RnRCaGFhARUVFfj7+xfL8lgWnj17hsmTJ3ME41euXAmBQFAs/a/owrc0i+CbN29CTk4Obdu25Rw/fPgwfHx8sGHDhmIhK0ePHkXfvn05Bl5xCVn5Ezhw4ACbQArDsgsKCmBhYYH27duz84Rt1MfHB9ra2jA0NCxRPP9Hefr0KXR1dREYGAigMPzKwMAAZmZmTINM1DB19OhRdOzYUezaTtF7k5SUhCZNmuDWrVu4ePEi530RahgW3RQoz3XfvHmD169fc/o40XsobvezKK6urhyPvhcvXmDgwIE/zTAl+lujR4+GgoICzM3NoampCRsbG2bomz59Oho3bgw5OTlYWVnBzc1N7DxEi963fv36oUOHDrh06RIGDBiANm3aoEmTJjA0NETLli3Fpl6irF+/Hmpqahg6dCgnRBgo3DwShicL5RzS0tJgZmbGCU0XF0Tf9cuXLzPj89OnT2Fvbw9tbW1mgBM++4SEBISEhIjls83Pz0daWhr8/f1Rv359ODs7cz5/+PAhXF1d4e7uzgnTFJd1zPcSI8XGxqJBgwZM2w7gzvOuXLlSIZqwRY13AwYMgLy8PMdDMiEhAcbGxsW8rnl4eKoGYmOUAv5vmBK6owuNIsIOLisrCxoaGmIrfliUw4cPo3nz5oiLi8Pt27cRFhYGLS0taGhowMXFBa9fv0ZSUhJ27dpVrh3tL1++sA5d1LNKGM7Su3dvDB48mE0E+vXrByMjIzg4OFTIgCkMHzl//jzThxFy/PhxtGvXjoVyNGzYsMw7R6IDWHx8PAYPHoxevXrBwMCAhfIB/88Cl5+fD3V1dXTr1q3U13r16hW6dOkCAwMDjvH0yZMnaN26NRYuXIi6detyDCbXr19Ht27dmG5CaRE+i4yMDOY1cvbsWc41fH19oaWlxfEMS09PR5cuXTBt2jQ22S0PZ8+ehUAgQL169VjoipBVq1ZBQkICM2bMKPasS9uWsrOzERMTAwMDA7i6urLjV65cgY6ODqpVq4b58+ez49++fYO7uzv69esnNhO9P4Wiz2Pt2rXo3LkzC9u6cOECZGVl2Y6qkJ49e+LWrVswMzODj49Pma+fm5uLiIgIGBsbs0xl69evh62tLbp27coM/KKGKSHiYkgRLafohkX//v3RtGlT1KpVCxs3bmTH//nnH7Ro0YJ5GZaX6Oho6OjoQFFREe3atWMCzUXLJo6cOHGCeZsB4Bj2RQ1TR48eBVD+hWbR7yckJKBz5864f/8+UlNTERsby7wIheP28+fP8eDBA7x+/VpsNVSuXbvGtKOEoec1atRAly5dsGfPHmRlZWHx4sVo06ZNhWyu/Eq2b9+O2rVrY+fOnSwcuSgLFixgIYmDBw9G+/btYWpqKnZ1FX3fQ0ND0bRpU0RHR7N5y7Nnz2BjYwNtbW22gVS0jxCXtit814Tz1r///hv9+vWDoqIiJ6QWKPSYsra2hq+vb7H5UVVG9NmcOnUK69evR0xMDNvQOXfuHJSUlODt7c3OKzqPL+0YIHr+4sWL0aFDB/j6+mLkyJHs9/38/FCrVi2Eh4dj1qxZvIYoD08Vp8obpYpOvrKysrBjxw7Iy8tzjAXCiVfXrl0xYMCAX1rGiqCkDvnq1auoVq0aXF1dIScnh759+2LLli04cOAAGjZsyDRAhJS2o50/fz4ePHjA/t61axeMjY053j2pqalo1qwZwsPD2TV8fX1x+fLlcoe1FRQUICMjA61bt+YYD4rW5dGjR1i+fDkmTpxYZqF60fu7b98+PH36FPn5+fj06RPGjBkDfX19jmEqLy8PKSkpKCgoKPOu3IMHDzB06FA0adIEW7duZcfbtGlTzGMoIyMD7u7uaNeuXbkWaImJiVBQUGD6a4GBgVBVVeUYpqytraGpqYnVq1fj8OHDGDt2LAwMDDjeQ+VlxowZLGSkaPtYs2YNBAJBhWRZycnJQUxMDPT19eHi4sKOC8MdxowZg7179+LkyZNwcXHhTEh4w1TVoKTnsGzZMpiYmGDQoEHM83Xbtm2QlZWFtbU1evToASsrK+jq6gIozJInDNn8UYTi/kKSkpKgq6vLmTivWrUKjo6O6NatGxP+FkcDimiZp06dCl9fX+zfvx9AYei2hYUFbG1tWV+XlJQEd3d3ODg4VIhXwsuXL6GpqYkVK1Zg69at6N69OywsLDiGHHG8r0DhnGTQoEEwNjbGnDlz2HHRMUpomJKXl8exY8cAlL3/KbppsXLlSujo6MDd3Z1tJBUUFODq1avFDFOiiNv9zs7OhoaGBkxNTVko0MuXL5lHkfB+BgYGwtPTs0SdqapKXFwcWrZsWcz7PC0tDdeuXWNC18D/PaacnJw4G17iGOYVEREBZWVlnDhxAmlpaZzP3rx5AysrK+jp6VXIZlllcu3aNVhZWbE51uPHj9G7d2/Y29sX86Z/+vSpWIUsizJu3Dg0atSI6cKampoyCZBz585BRUWlXJtHJRESEoL69esjJCQE/fv3h4aGBiwtLZmXXXh4OFq2bAk7Ozv06NFD7DxEeXj+JKq0UUp00pSdnc2Z5G3evBnVq1dHUFAQsrOzkZ+fj9zcXJiZmSE4OLgyiltmROt57949XLx4ke1k37p1C1OnTsXevXuRmJgIoNDjw8zMjO26loXTp0/D0NAQXbp0YTuP7969g7e3N1q2bMnRIxo7dixq1KiBgIAAWFpawtTUlHXo5VnYFxQU4OvXr2jQoAHTixEdKDIzM0vUgijtYFI0TFBFRQVr165lk6BXr14xw8zcuXMBAG5ubggKCir1NTt16oSAgAD297179zB48GA0adKEeSFkZ2fDwsIC+vr6iIiIwKxZs+Ds7AwjI6Nyp6XNzs6Gj48POnXqhLy8PDx69AgjR46Evr4+ZwHYtWtXmJmZQU1NDU2aNCmzd5ZoOYveo9DQUEhKSpboKr1///5y71YJn2t2djYOHToEfX19tGrVin2+ZMkSODg4oE6dOrC3t4e3tzc/IamCJCYm4sOHD7h06RLbWQUKPZXMzc3Rr18/pt309OlT9OnTB/7+/ggICGDPs1OnTvD39//PLGdCDh48CIFAAA8PD7x584ZlIDt79ixq1aqFRYsWsXPXrFmDli1bom3btvj06VMF1vzXExYWBgUFBcTExDDx3Pz8fCxatAgWFhbMC9fS0hLm5uYV8r7cuXMHoaGhnHH5+fPnGDZsGMzNzX8Lw9THjx8xYsQIWFtbc/RKihqmBg8eDIFAwLzxSsusWbNgaWkJoLD/y83NxY4dO2Bqagp1dXXOuQUFBbh27RqaNm2KBg0a/BZG+Pfv30NXVxd2dnbFskM+e/YMo0ePhpycHEcbURyIi4uDoaEh9u3bx46tWLECfn5+EAgEUFNTg52dHXuGK1asgISEBGbNmsXR2BMnXr58CSMjI2Ycj4+Px507dzBnzhyWFOXdu3fQ1tZG586dK7Oo5SYmJgZmZmZwdHRkYekPHjxA7969YWtrWyGSFJXNhg0b0KBBAyYuPmfOHNSoUYOjkSXUBhZN0FRaRPuxhw8fQlNTkxn6gcJ2ZWpqChsbG3YsLS0NOTk5YushysPzp1BljVKik9P58+ejW7duMDc3x4wZM9iEQ6gxZWtri27duqFDhw4wMDAQqw5HtIMNCwuDjo4O9PT0oKamhoCAALx584Z9np2djeTkZLi5uXH0IsrKhg0b0KJFC3Tq1Il5DXz8+BG+vr5wdHRkA2VBQQHCwsLg6emJfv36lXmh8r1JsZ2dHby9vdnnwt+9fv06Jk+eXEzYszSItqPp06dDSUkJ165d44giA8CnT58wYcIEyMnJQVtbm2Mg+lFycnJw5syZYq70d+7cKWaYysjIQO/evdGyZUu0adMGQUFBZfYCK8rSpUshLy/PDHqPHj3C8OHDixmm3r9/j9evXyM+Pr5M1xG9tytXrkT//v3RpUsXzJkzhz3DfzNMAeXzeBMlIyODGaZEtRq+fPmCV69eIT4+np+QVEEOHDgAX19fqKioQCAQoEGDBhzR3nXr1sHc3Bz9+/cvcaGZnJyMUaNGoX79+sU01P6Ne/fuQV1dHTIyMvDw8MCMGTNY6PKQIUPQokULjhZFZGQkR5hWHLl9+zYMDQ1x6tQpdkxYn7y8PNy+fRtTp07FxIkTsWbNGvYOl+d9SU5Ohp+fHxQUFDgeaEChESEgIADNmzcv5ikrjnz+/BmBgYH/aph68uQJZs+eXeZ7mpKSwr4rNMqkp6fjwIEDUFNTK6avV1BQgAsXLqBHjx5iZ4gvOh8QttUPHz6gcePGcHBwYBtqV65cQefOndGsWbNimbzEgbi4OKirq2PAgAE4ffo0OnbsiKZNm2Lo0KE4ceIEdu/eDS0tLY539eLFiyElJYXw8PDvhvtVZd6+fQtzc3Ns2rQJJ0+eRL9+/WBmZgYDAwM0atSIeXe/f/9e7NpuUfLz83H06FHY29vD1taWY5jq378/DAwMKsRzvDIJDg5mG7l79+6FjIwMC/1OT0/H+/fvARSOQ2V9nkuXLsWkSZPY35cvX0a9evWYZ5mwz7h79y5UVVVL1E/9HYzzPDy/K1XWKCVE6Jq5du1azJkzB02bNoW9vT1SUlKQk5OD7du3Q1VVFRoaGrh161aFTKQrg4ULF0JZWZllRhs0aBDk5OTYrkNubi6mTJkCOzs7WFlZlWsHW9RosmzZMrRq1YrjMfXhwwf4+vrCwcEBGzZsYOemp6ez/5fHmPD69Ws8f/6cDSSbN2+GsbExRo8ezc7JysqCu7s7PDw8yjSIjBo1ink/AIVhiG3atGETnQ8fPuDs2bPo0aMHFi9ejHfv3iEzMxM3b97E5s2by92Oli1bBltbW/a30DClr6/P0W359u1bmYW+Ae4AK/p/c3NzdOnShf399OlTZpgSDeWrCMaNGwclJSVMmzYNISEhUFVV5bhoh4eHo2bNmuW+rmgb2r59OyZPnoypU6cyY0VmZiYzTLVu3fo/f4OncomKioKioiKmT5+OgwcP4s6dOxgxYgRkZGQ4QsVr166FhYUFBg4cyPHoe/nyJWbMmIEmTZr8UJZR0UyLWVlZmDNnDiZMmIC5c+ciMDAQBgYGOHToEE6cOIFGjRphwYIFnO8L3y9xbUNnz56FkpISC4cU5Xt1KuviQbQvunz5Mvz8/KCkpMQ8IIQ8f/4cvXr1gpOTE/MEFmd+xDD1b8d+lEOHDkEgELBEEhkZGdi/fz+0tbXh6enJObekDIdVkZLG+VOnTqFjx45sLBee8+HDBzRs2BCtW7dmxrnLly+LtSfjqVOnICsrCy0tLZiamuL06dMsIUBiYiLMzMw4C3IAmD17NuTl5cuVHOVXUFL/kp2dDXd3d5ibm0NCQgLBwcE4duwYkpKS4OLigpkzZ3LOr8ptVxRRw4ioF1tBQQEOHz4MBwcH2NnZsc3Au3fvIiAgoJjnn7ggrG9wcDCWLFmCEydOcBJm5OfnY9OmTVixYgVno7e0z1Mo+7B79252LDExEaqqqhzPZgD4+vUrtLW1WRIhHh4e8aDKGaWEmgj5+fm4ffs2jIyMcPnyZQDAyZMnUbNmzWKp7qOiouDk5FRsZ00cKCgoQH5+Pjp27Mh2i/fv3w9ZWVnWoWZnZzONiMmTJ5fLo0Z04rdw4UL07t0bWlpakJCQQJcuXViYzIcPH9ChQwc4OTmxtOgl/UZprxkeHg5ra2vUr18fbm5umDZtGoBCL6amTZvCyMgIvr6+sLS0RNOmTdkgVpprnjx5Er179+bcn7i4ODRs2BBjx47FgQMH0KlTJ9jb28Pa2hr6+vrFJntA2dtRfn4+du7ciUaNGsHLy4sdFxqmDAwMOCK/QkpTR+EkT5gtUIiwznPnzoWFhQWePXvGPnv69ClGjhwJRUVFjmGstBRdcOrp6bF3dO/evZCWli6mkzBs2DC0aNGiQnapxo0bh4YNG8LV1RXe3t6QlZXF+fPnAfzfMGVoaAhzc/NyX4vn57Bq1SpUr169mJEiJSUFW7ZsgZycHCfb3saNG6GhoYFZs2Zxzn/27NkPa6EJw9WEHD9+HE5OTkybb/Xq1VBWVsbcuXNhbW0NBQUFTupxQHx2WUXLKZoxsEGDBsyIKxrqePDgwWLPojzXLdov3bx5Ex07doSTkxNnUQEUGhc/f/5c7mtXFUQNU6IaU+WZlxRd1CclJaF3796oU6cO83zLyMjAvn37oKuri3bt2pX5WpWBsH5xcXG4ceMG81K8evUqJCUl0a1bN+YNJLyPMTExEAgEsLOzK/ZuiytxcXElZk1OTEyEo6Mj8zwRbUtV3Zgr2nYfPHiAZ8+esXlmZmYmzp07V0w+wN7envPuiAOiwuTv379Hs2bN4OHhwTFM5ebmYs+ePcyrUegxJU5C9d/bwJg9ezYkJSVRq1Ytzma20MgYERFR5muuWrUKkpKS2Lt3b7HPhgwZglatWmHHjh3sWEZGBiwsLH6LsEgenj+JKmWUio2NhYKCAtv1uXDhAvT09AAAe/bsgYyMDDPUpKenIzo6molRC6nqu9hFyycU+3ZwcMD169eLpeXOzs7G4sWL2aJbSHkNb3PnzoWMjAxiYmJw9+5dREREwMLCAp07d2aGjI8fP8LJyQkBAQFlWowVreu0adOgoKCA06dPsx1ygUCAly9fIj09HZcuXUJgYCCGDRuG6dOnl9n4JjT0AYXiyMLwv3Xr1qF+/fqQl5dHaGgozpw5AwDo27cvevbsWer6fa+eQKEH1IEDB6ClpcVJhXvnzh0EBARAXl6eCUCWlVevXsHHxwfr168vJur6/v17yMvLFzO2PXr0CCEhIcwrrjQMGjSo2G7evn37YGxsDOD/LtvCdzQtLY3pRQD/X7CWZ2G/cuVKqKur48aNGwCAv/76CwKBADVq1GCZ/jIzM7F7925069atyvcHfyKnT5+GQCDAgQMHAKCYjlp6ejpmz54NaWlpdg4AHDlypMxadtevX2fC96KGpvDwcKioqDAPi6tXr2L48OFo2bIlBAIBRowYUeZ6Vhb/FqpgYGAAJycnTvhyRkYGvLy8MGHChHJdV3ito0ePwtfXF23btkWXLl04+oh+fn5wdHTk6Iz8jnz+/BlBQUGws7Mr930VfZ7Hjh1jXoFJSUkYMGAAatSowTFMHThwANLS0hgzZky5rvurENbv4cOHsLe3h5ubGzp06MDG/WvXrqFevXro1KkTx/v52LFjaNeuHUxMTMTWy+RHiIuLg6enJ6ytrTnzvooYT382om130qRJMDIygqamZjGPcaBwvvDy5Uu4ubnB1NRUrKIdvn79ivr167PNuMzMTKxYsQK2trbw8/PjGKby8/Nhb28PgUAAFxeXH9ZBrAqIPs8jR45g586dnOysAwcOhLS0NG7evIm3b9/i1atXaNu2LSwtLcv8PPft2weBQICDBw9yjoeEhODJkyd48uQJfH19YWFhgQEDBmDlypVwdnZG06ZNxcpBgYeHp4oZpZ4+fQpdXV0MHjwYOTk5uHXrFpo3b46NGzdCVlaWkz717Nmz8Pf3L5WOSFUgJycHGRkZ+PDhA6fD9Pf3h4aGBmrXrs3R34mPj4eTk1OxrCxlpaCgAJmZmWjbti1CQ0M5n61YsQKampro1q0bM1rEx8ezgag0A2fRwSAxMRFt27ZlQp5Hjx6FjIwM1q5dC6DiwkdEy/jgwQMYGRnBxcWF7Ug9e/aMI55eUFCANm3alHkCL+qOfPnyZZw7d47jnXTw4EFoampyDFPXr1/H3Llzyz1gPnr0CF5eXpCUlESLFi0QGhqK1NRU5qUwa9YsGBsbF/P2KEuWnsuXL2Po0KHFvhsbGwsfHx9s2rSJY0wFCo0PAwcOLHa/S4Oox0VycjJGjx7NPCUPHToEGRkZLFiwAP7+/qhduzbzehHdeeQNU1WHgoIC7N27F1paWhxPqKIT1g8fPqBu3brFUmYDZTPIJyUlYcmSJahfvz5atGiBGTNmsM969+6NgIAAttOdkJCA69evIzAwUKwWRkWJjIxEx44dMWLECDahv337Nho1agQzMzOsXLkSa9asgYuLC4yMjCqkrgcPHkT16tUxcuRIjBgxAra2tqhXrx6OHDkCoNDo17VrV5iYmHAMjr8jnz9/hr+/PwYOHFiuDLVCQkJCoKmpib/++gtJSUkAChfD/fr14ximvn37hvPnz4vFgkxYvwcPHkBOTg5hYWF4+/ZtsT776tWrUFBQQMeOHfHixQtkZWUhIiKCk5H3dyM+Ph6zZs2Cp6cnmjdvLnZJOkTb7qRJk6CoqIgTJ07g2bNn6NGjBwQCAWe+sHz5ctjb26NVq1ZiV9dv375h1KhRqF69OvMSyszMRFRUFJo3b84SzwCFdRo8eDDWr1/PskiKG+PGjYOmpiYcHBygr6+PJk2a4OrVq3jz5g3atWsHOTk5qKiowNLSEnZ2dmV+nllZWRgyZAi0tbWxePFidrx9+/YwMTFhWRmfP3+OefPmwcTEBC1btkSXLl3Erg3x8PBUMaNUbm4uIiIiYGpqylLgCncUIiMj2XmZmZnw8PBAhw4dxGrBefz4cQwdOhQaGhqQk5ODp6cn21l5/PgxbG1tYWRkhIKCAhQUFCAhIQFubm6ws7Or8I7V19cXffr0KXa8V69ekJaWhouLC2f3sTT3uW/fvsWyayQnJ0NPTw/Xr19HTEwMpKWlOeGJy5Yt46Q9LgtFJ/55eXnYsmULWrRoATc3N2aYAgpdrWNjY+Hl5QVjY2M2sf3RxUOPHj2Y3hdQOEjLy8tDXV0dUlJSGDZsGP7++28AhQs1HR2dYlofwjKWl3v37mHQoEHQ1tZGw4YNMWbMGPz999+4efMmNDQ0EBMTUyHXEt6bDRs2sLq9e/cOampqJb6jbm5u6NatW5kXZMePH8fcuXNx7do1duzOnTt4+fIlnjx5Ah0dHSxduhTA/3fTBAIB57nwVD2ys7Nx+PBh6Ovrw9XVlR0XXVxmZ2ejQYMGHGH+ikCYvU9TUxO2tra4efMmoqKi0Lt3b5YRrWh7FZdFr2gfPXXqVNSrVw99+vSBg4MD9PT0sG7dOgDAP//8A3d3d5iZmcHCwgJdu3Yt0wS+qHdmWloaHB0dER4ezjneo0cP1KtXj4VYXbhwAX369OEk8fhdSUhIKNOmTlGmT58OZWVlnD9/vlhoZFZWFvr06YM6deqwvl6IOCzIEhIS4ODggOHDh3OOF51z3LlzByoqKlBTU4OxsTHq1asnlqLmP8qdO3fg5eWFESNGVFgSlF+FqCD1zZs30bJlS5w+fRpAYdilnJwcvLy8IBAI2Bw4KysLe/bsEVtd2JSUFEycOBECgYAJbAsNU5aWlnB0dMS+ffsQFBQEQ0NDsdU/W7NmDZSUlJjH5p49eyAQCHDy5El2ztGjR3Hw4EHExsZytBzLwqdPnzBixAjY2NggMjISfn5+MDMzYxvnRfvVouGSPDw84kOlG6WEWd+EJCUlcTQR3r59CzMzMxgZGWHlypVYvHhxsZ1dcTBMrVu3Dmpqahg1ahTmzJmD1atXw9jYGCoqKpg4cSIAYPfu3TA2NoaysjLs7OzQvHlzNGvWrFwW/+/dm5CQEGhpaTHjgpAZM2bA3t4eoaGhZbqv2dnZiI6OLqYFlZSUBA8PD/Tq1Qvy8vIcAcLnz5+jXbt2JcaL/yiiZc3KykJaWhqAwnv2119/wd7eHu7u7iw0NDY2Fi4uLnB3dy/1/U1OToaLiwvk5ORw69Yt3Lt3Dw0bNsS5c+fw/v17bN++HcbGxujZsydevHiBvLw8HDhwADIyMhwx94okKysLSUlJGDNmDOzt7SElJYVJkyahfv36MDc3Z/ejLIjel5cvX8La2hrNmzfHgwcPABR6ftWpUwddunTBxo0bER0djdatW5fJ2Cdk/fr1UFNTw9ChQ3H9+vVin0dHR8POzo7paZw7dw6DBw/G8uXL+YmIGJCdnc1E6du0acOOC9/FixcvwsbGhmOQrCiSk5Nx7tw52NjYQFtbG0FBQdDV1cXQoUMr/FqVwZ07dxAeHo4LFy4AKPQOHT16NFRVVTmeCV+/fkVycnKZslKOGDEC06dP5/S7SUlJ0NfXZ1mkRL0qLS0tMWDAAPa3uKaxLyvlmaN8/foVtra2zKv4w4cPOH/+PAIDAzF79mzk5OQgNzcXHTt2RMuWLSuqyL+Mhw8fQltbm7OAFUV07IiLi8PixYuxbNkyjkfy70pSUpLYaaUWFaT+8OEDZs+ejaysLJw+fRoNGjTAypUrkZ6eDldXVwgEAsydO5fzG+JSV6Cw3xRto8KNdGHEg1DnsmXLlmjUqBFMTU1x+/btyipuuQkJCWEbDzt27ODo334vC2R512hCnT5NTU3Uq1ePeZiVFM76vb95eHiqPpVqlDp48CAEAgE8PDzw5s0bphdw9uxZ1KpVi3lBfPr0CR06dECzZs3QokULDBw4kE14xWEBKhT13b59O2ei/uzZM/Tu3RuKioosTOXDhw+YN28e5syZg02bNpVr10h0IDhx4gT27duHbdu2sWO2trYwNjbGlStX8PXrV2RlZcHX1xdLly6tkExTUVFR8PT0ZHVet24dBAIBOnXqxOqTnJwMDw8PTrat8jB9+nS0atUKLVu2ZJoF+fn52LZtG+zt7eHh4cHE9O/cuVPmXZwvX76ga9eukJWVxYwZMzB27FjO54cPH4a6ujrLIPMrQyri4+OxYcMGODk5oXbt2pCXl+d4iZUG0ecvXEgeO3YMHh4esLGxYYap8+fPw8rKClpaWrCzsyuz9wVQmFmvdu3a2Llz53cnOcK29ODBA3z9+hXt2rXDwIED2efi0C/86YgapkQ9pjIyMuDp6Qk/P7+fvuEQFhYGb29vyMnJQSAQsPBicSUmJgYqKirQ0dHB8+fP2fFXr15hzJgxUFdXLzELZmkn8Js2bWILK9F3zd7eHh06dGB/C/sAf39/dO3atVTX+FMp2uaFRqkpU6Zg165d6NKlC+zt7dG8eXMYGhqyjY7k5GSx2KAryl9//QVJScl/nXN8+/aNeTL+iYjLAvvfBKmBQi96URmAwYMHw9LSEg4ODmJTR6Bws1w0nEzYZufMmQNFRUV07twZAoGAI/hdUFCAV69esdBbccXT0xNjx47FhQsXICMjw9YuBQUFiIiIKJYJr6L48uULhg8fDgsLC8ybN48dF8c+j4eHp2Qq1Sh17949qKurQ0ZGBh4eHpgxYwZzCR0yZAgcHR05qb6Tk5M5ruvisPAsKtInLLNwof7ixQu0bNkSFhYWLD66KOU1ZAizlTk4OEBRUREODg64ceMG0tLSYGdnBy0tLWhra8PY2Bi6urpl9m4pWubFixfD1NQU3bt3Z5OQ2bNnQ0JCAl5eXvDw8ECLFi1gYmJSZgOG6IA0Z84cKCkpITQ0FD179oRAIMCUKVPYedu2bYOjoyOsrKw4gqllHdS+fPnCriPMspefn8/u29SpU6GqqlrMsPKzDFNFn9c///yDa9eucTSdSoPofZk3bx7CwsLYQvfIkSNwc3PjGKZSUlLwzz//cHZ3S/uOxsXFoWXLlsU01NLS0nDt2jWW5Q8APDw8IBAIoKurC2Nj4zJlauSpXEQNU25ubgAKQ4t/ties6G9eu3YNEydOhI2NjViMKf/GlStX0KtXL9SsWbNYlrtXr15h3LhxqFatWjHR2NIg+n4dPnwYYWFhLJnEli1bYGZmVmIIX79+/cRK1Ley2bNnD2uPo0ePhrm5OapXr46QkBCcO3cOANCzZ08EBQVxvidui7RLly6hZs2aiI6O/u45S5cuhaurq1hlKfvT+J4gdWhoKK5evYrMzEyYmZlh3LhxAAo3Hzp06MAJORWHviEvLw/jx4+Hnp4eJ0PgjBkzUK9ePZw8eRK5ubkIDw/neEyJG9/rR3bt2gVTU1NISkoy702gcP7n6emJsLCwn1Ym0cyms2fPZsfFod3w8PD8N7/cKCXqmZKVlYU5c+ZgwoQJmDt3LgIDA2FgYIBDhw7hxIkTaNSoEebPnw9APF0zRUX6hF5fwP+NEsI6HD9+HBISEizcoiIRpjkXGvc2bdpULP579+7dWLJkCRYvXlzMaPajlDSApaenY82aNWjWrBlHeHDv3r0ICQnB0KFDsWTJkgrRS3j48CGWLFnCMtrl5eVhzZo1kJSUxOTJk1kZo6KiMHjw4DJN3EvKdvP+/XsMGDAANWvWZJoJQtatWwdLS0ukp6eXtVpVgnHjxkFJSQnr1q3jGE6FhilbW1s8fPiw2PfK8o7GxcXB0NCQ47GyYsUK+Pn5QSAQQFVVFU5OTgAK28vevXuxa9cusdWh4Ck0TMXExMDQ0BACgQB6enq/xBP2e+1TXNrQ9/qw27dvo1u3btDV1eVkvwQKvXOXLVtWrv5d1Nt3y5YtEAgEmDRpEjIyMpCamoqIiAg0bdoU7u7uWLBgAfr27QtpaWlmvOb5b96/f8/Z7AAKx7iiSStatWrFFvniyocPH6CkpARvb2+Ozpjo+zl69GiEhISIxbzvT+TfBKlNTU3x+fNnAIUbdZKSkhgyZAisrKxgbm5e5oyqlcmHDx8wYsQIWFtbY+XKlZg7dy4UFBRYQgegcP47adIkCAQC7NixoxJLW3pE+/tz585h//79eP/+PQDg9evX7Lnu2rULBQUFePLkCTw8PMqVZe9HqcjMpjw8PFWLX26UEoqdCjl+/DicnJxY1iyhEWXu3LmwtraGgoJCsYmYOCEU6Stq2Rf1qHn69Clq1qyJY8eOVfj1R40axUTHt2/fzsliKMw2VZTyLFiePXuGt2/f4u3btwAKd8PWrl0Lc3NzdO7cme10Fr1Gaa4ZGBjIQvCAQn0ogUAAeXn5Yvdw7dq1kJSUZB5TohOf0himRM9NTU3Fly9f2N9JSUno1KkTpKWlcfDgQbx+/RoJCQlwcXFBmzZtxGqyVZQjR45AXV2do+skWp+jR4/C3d0dOjo67JmXh7i4OKirq2PAgAE4ffo0OnbsiKZNm2Lo0KE4ceIEdu/ejcaNG3OypwkRJx2K3x3RcNGiz6Wk9y47Oxu7du3CoEGDKjU0W1zeVdF7eP36dVy4cAE3btxgx65du4Y+ffrA0NDwu1nuSvu+vHv3jo3f+/fvZzoiGzZsgEAgQFhYGHJzc5GWlobdu3fD1dUVtra2aNeuHe7fv1/aKv5RlNTuLly4ABUVFbRv357zvFNSUnD37l24u7tzdPvEmT179qBGjRrw9/fnbHB8+/YNoaGhaNSoEZ4+fVqJJeT5L/5LkFp4zsyZM9G2bVv0799frDOkCb129PX1ISkpyTYlRd/HtLQ0zJgxQ+yyhAsZO3Ys6tatC3V1ddSqVYuJ0t+/fx8+Pj5QU1ODoqIizMzM4ODg8MueZ0VkNuXh4al6/FKj1PXr1yEQCDBmzBiOoSk8PBwqKiosG8XVq1cxfPhwtGzZEgKBACNGjPiVxaxwvudyKhy8oqOjYW9vX8xgV1rOnj2L69evc7QZXF1dMWfOHNy8eZOT8S4/Px/Tp08vt2ux6IAwYcIENGnSBBoaGlBTU2M7ZtnZ2VizZg0sLCw4HlNl8VZ6//493NzcOLv1qampmDVrFmrUqIEFCxYUK5dQf0iYfao8dZw6dSocHR2ZbsDOnTtZGbp06QJJSUmoqqoiICAA1tbW5aprVWDDhg2wtLREamrqd3c0Dxw4gJEjR1bYROTUqVOQlZWFlpYWTE1Ncfr0aSZQn5iYCDMzM0RERFTItXgqnr/++guurq64fPkyp93/VyID0Xf6d1ho/yxE37+wsDAYGBhAWVkZtra2GDZsGPvs6tWr6NOnD5o2bVrunfq0tDS0b98eNjY2WLlyJSfDFPD/PjYsLAzfvn1jx7OysviQq3Jw8eJF1K9fHx06dGD3MTo6Go6OjmVK0lFVyc/PZ3pETZo0YdpD3t7eUFJSEmth6D+J7wlSF+3PxU2G43sIdY5MTExYVAfArZM4GU1E+5GLFy/CwsIC58+fx9evXxESEgJZWVk2x05MTMTff/+NrVu34sqVK7/cW72iMpvy8PBUHX6pUSopKQlLlixB/fr10aJFC463Q+/evREQEMC8dxISEnD9+nUEBgaK9aAl5HuGqdTUVHh4eKB///7l6lhjYmIgEAhgZWWFW7dusc568+bNUFdXh4SEBMuKJLxumzZtWOa/8jJ79mwoKCjg6NGjOHz4MObMmQOBQMBCC759+4bVq1fDwsKCozFVnjpv3ryZuYWnpaUxV2lRcUkhBw8eLHc7mjRpEhQUFLB8+XImJG5vb4/IyEgAhYK0gYGBEAgEuHz5cpl1lSqLS5cu4ciRI4iPj2fHhKnIhYjq/Jw+fbqYXlVFLY7i4uLw6tWrYscTExPh6OiI1atXV8h1eCqWzZs3Q0ZGBsuWLeMIbZ87dw4CgQC7du2qxNL9XkyfPh1KSko4f/48EhMTMXLkSAgEAvj7+7Nzrl27hvbt26NHjx7lvt7x48dhaGgISUlJLFy4EEDhhoOwn1u/fj0L5RNqTPH8OHPmzEHfvn2LHb9w4QLk5eXRs2dPNq5fuHCh3KnWqyLXrl1jHjaOjo4YP378H5Fl73fie4LUJc0Nfgdjwvfm9uJkKBYdqwEgMjISoaGhGDNmDOd4eHg4ZGVlsWjRIk60gpDKqLO4bvjy8PAUp1KEzp8+fYo+ffpAU1MTtra2uHnzJqKiotC7d2+WYaXoYPU7TLxEBy/hYC2MzS6vuPiVK1egoKCAWrVqwdjYGDdv3gRQONh07twZBgYGTG/pxYsXcHd3L1f8t+gORXZ2Ntq0aVMspGrnzp2cePpv374hKioKNjY2CA0NLdeEJDExEdLS0nBwcGALoG/fviEiIgICgYBl3itKaesrDLN8//49zMzMOIvqz58/Y+jQoZzU9e/evUNERESFiMX/SjZt2gRtbW307dsXjx8/ZscfPHgAbW1tjBw5klOX5ORkuLq6Iioq6peVMS4uDp6enrC2tharCd+fwj///AMTExO2kypKYmIihg8fzjKF8RPJ8vHw4UM4OzuzPv3YsWOQlpZG//79oaioyDFuPHz4sFz3W/jev3nzBrq6utDR0YGLiwsL1xU1TAlD+aZPn84/41KQk5ODTZs2QVJSkuMZLryvEydOhEAgQNu2bTnf+x3vMd+3iz9/miC1sL729vZi58XdoUOHYuLknTp1gkAggKurazFN1IiICCgoKGDatGnfzY7Mw8PDUxYqLftecnIyzp07BxsbG2hrayMoKAi6uroYOnRoZRXplyAq0qekpMQR9S3rZCw/Px9JSUkYMmQIli1bBhcXFzRq1Ii5vMfGxqJz586oU6cOGjVqBBMTE9jb25f5uqITC6H+g6amJmbNmsV+T2iU6dOnD7y8vJCRkQGgUGNqyJAh8PX1LdV1S5rMPH36FFpaWmjZsmUxw5SUlBSWL19eqnqJcu/ePRYyBhR67mlrazNjl7DsiYmJaNiwIdOsEkVcDKmbNm1CrVq18NdffxXThUpPT0dERAQsLS3Rp08fPHv2DKdOnYKnpyfMzc1/SR3j4+Mxa9YseHp6onnz5r9NyMrvRnx8PAwNDTF58mROCFdmZiaAQr1AU1NTpsfGP7/ysWLFCsTHx+P8+fNQVVXF6tWrUVBQAH9/fwgEAnh4eHDOL68BIykpCS9evMDhw4fh7OyMli1bcgxTQnbv3l1i4gOe/3Pq1CksXLgQY8eOZd7hWVlZ2LVrF2rVqlUso97y5cvRrVu3YvpSvyOiY/3vasT4E/jTBKk/f/6MPn36wMXFhTN3rOpcu3aN9d9CCRUAGDFiBCQlJbF161Y2hgsJDg5G27Zt+feTh4enQqk0o5QoYWFh8Pb2hpycHAQCASfz1u/I58+f0atXL44mREUs7qdPnw4jIyMkJSXBxcUFmpqaLOve169fceXKFWzevBlnz54tc/x30Yw4mpqayM/Px4gRI2BgYMDESIW/P2LECLRr147z3YEDB8LU1PSHs9KJTsITEhI4A+SzZ8/QsGHDYoap4OBg2Nvbl2nQ3LdvH2rVqoVhw4Yxweb4+HgYGRkxzZb8/HxWrs6dO2PQoEGlvk5V4PHjxzA0NOTowwh59+4dcnJykJubizVr1sDY2Bg1a9aEgYEBXFxcfplx6M6dO/Dy8sKIESMqJFMjz88hLy8PnTt3RuvWraGnpwdnZ2e4urpCW1sb6urq8PLygkAgQMOGDdG0aVNOOm2e7/NfRojRo0djwIABrF+cMmUKPD090b179wrxkIqPj0dSUhISExPZZ7t374azszNatWrFtBDnz5/Ph9X+AGvXroWSkhJat26NBg0aFMs2uWPHDtSsWROBgYGIi4tDYmIiOnbsiFWrVrHf+N0NUzy/B3+aIPWXL184SXCqOqLPZMmSJfD29uYktenbty/q1KmDHTt2cHTARL/7JzxXHh6eX0OlGqVEJ1bXrl3DxIkTYWNj80csOBMTE8ulCXH69GlcuHCBs7MBAK1bt8bGjRuRlZUFa2traGtr4/bt2yUOHOXxkLpz5w58fHxw8eJFAIWaMa6urvDx8WHZVrKysuDi4lLMYBMZGcnCC0vDpEmT0KJFCxgbG2P37t3MYCQ0TDk7OzPDVFZWVpkGzaysLPTv3x8CgQDu7u4YPnw4m2Ts3bsXEhISmDt3Ljs/OzsblpaWmDx5cqnrUxW4fv06jIyMOJoC27dvx4ABAyAtLQ1ra2ssW7aMc/7r169/uZ5JUlISe468h03VQ9ge8vPzcebMGVhYWODo0aO4f/8+Dh8+jKNHj2LXrl1QVlbG0KFDMXny5D+iny8von3XwYMHsXz5cly/fh1paWnsuLu7O1xcXAAU9kcVYcAQXvfQoUNwdnaGrq4uvL29sXXrVnZOdHQ0XFxc0LhxY/Tp0wcCgQD37t0r9bX+JIRi3nv37kVaWhqeP38ONTU1XLt2jfOs9+7dCzk5OaipqaFx48YwMTHh3xcesYQXpK6aFH0WMTExUFNTQ+/evTmZXPv27QsZGRns2rWrmMcU/zx5eHgqkkr3lPpep/anTMDKsmA4dOgQBAIBdHV1YWFhgW3btuH169cACg03HTp0AFB4D21tbaGvr8+0uiqCrVu3okWLFmjVqhXH22n79u1wdXWFrKwsnJ2dYWpqCiMjowrJQLdu3To0aNAAkZGR6NKlCxQUFDBlyhS8f/8eQKFhSlNTE8bGxpwd/bIMmlevXkX9+vXh5eWF1q1bY8SIEcwwtWzZMhYa07VrV7Rs2RKGhoZi217Pnj0LCQkJHDt2DAkJCRg4cCCaN28OHx8fREZGYsCAAdDX18eZM2cAcO9nZezW85OgqouwPbx+/RoNGjRgBmshN2/ehJeXF0cgVVzfm1/NuHHjULduXejr66NmzZoICQlhGWy3bduGhg0bokWLFrCysoKxsXGFaNodPHgQtWvXxty5c7F3714MHToUtWvXxtq1a9k5586dw6hRo9CpUyc8ePCgfJX8zdm3bx8EAgEOHjzIjmVkZEBPTw9Dhw6Fk5MTli5dykIi3717x5JqCJ8nb5DnEVd4776qyZUrV9gmx8mTJ9G4cWP07NmTY5gSbtSeOnWqsorJw8PzByBJlYxAICh2DABJSlZ60X4JEhISpf6OoaEh1a1blwBQixYtaOrUqdSkSRMyNjamHj160OLFiyk6Opr8/Pzo3LlzZGxsTJGRkbRjx44ylfHZs2eUlJRE1apVI0tLS0pJSaHPnz9TamoqZWZmUp06dYiIqGvXrmRhYUGxsbH08uVLUlJSoqCgIJKUlKS8vLxSPdOCggLOvQFA06dPp379+tGIESNozpw5tGzZMgJA/fv3J11dXTp8+DCFh4dT3bp12fdKal//dk0AZGVlRb169SIFBQUqKCigffv2kYSEBIWFhdGwYcPI1NSUNm3aRFlZWdSsWTOaM2cOSUpKUn5+PlWrVu2Hr1cVaNmyJQ0aNIjc3d1JRUWFatWqRbNnzyYHBwdq0KAB3b59m3bv3k3JyclExL2fZWm75aU0z5Pn5wCgxOcgbA/S0tKkoqJCu3fvJnV1dWrUqBHFx8dTREQEASA5OTn2nT+lny8ton3J9evX6ebNm3Ts2DGytbWl1atX06JFi+jbt280atQo8vHxIQB07NgxUlBQoHnz5pW6P/rw4QOpqqqyZ/jq1SuaPXs2zZs3jwICAig+Pp6GDx9Oenp6FBwcTAUFBTRo0CBycnIiJycnys3NJSkpqZ92P8Sd7OxsOn78OGlpadGrV6/Y8R49elBaWhrVrVuXpKWladSoUfTp0ycKDw8nDQ0NCggIYOeK4/jCwyOkMuYLPMURnVsfOXKEQkJCqFevXhQQEEAuLi60Zs0aGjRoEBERjRgxgiwtLSkqKoq0tLTIycmpMovOw8Pzu1N59jCesiDcKX3+/DlkZWUxcOBAHDt2DDExMTAxMYGLiwsEAgGGDx/OYsBzc3PLvMO6ceNGGBgYoG7dulBVVUVwcDCAwt15HR0ddO7cuVgI4ffK/KOI7u5v374d8+fPR8eOHbFlyxbOeXPmzIG6ujqmTp2KN2/elPmajx49wocPHzjHFi5cCAsLC2RnZ2PhwoWwtLREcHAw85gSen8JEXePj3PnzuHIkSPFdjOfP3+O5s2b8ztkPMX4t3csOjoaNWrUgIWFBZo1awYbGxs0a9asQrwmf2cuXLjA+XvVqlXo27cvevfuzekX16xZAz09PQQFBRXr+4DS9UebNm2CrKwsYmNj2XP58uULRo0ahc+fP+PDhw/Q19fH4MGD8ebNG7Rt2xZSUlKcsF6e/+bTp08YMWIEbGxsEBkZCT8/P5iZmeHVq1fsHH9/fygrKyM+Pr4SS8rDw/M7IjqGbNq0CePGjYOsrCw0NDSwaNEiFvlw4sQJaGpqolevXrh06RLnN8R9rsvDw1N14Y1SYohwMfjo0SPIyMjA19eXaSnFxMQgODiYZd4TXfyV1ji0atUq1KhRA6tWrcLJkycxbNgwKCsrY+HChQAKhRHt7e3Rp08ffP78uUzXKIrooBkSEoLatWvDwsKCpcMWCqkLmTt3LqpVq4Z169aV6XrR0dGQkpJC48aNsW3bNo7LsrOzM0tnPHXqVNjY2LCF2p9ASkoKvLy80KpVK96IwINRo0YhLCwM586d+9fzhO9wbGwsIiIiMGrUKKxbt44Xqf8PgoKCMHToUM67NmbMGAgEAhgbGxcznK9duxYGBgbo1asXC98Gyhay17x5c+jq6uL8+fPs+SQlJQEAxo8fD19fXyQnJwMozLykrq6ORo0aITExkQ+pLQXC1PGampqoV68ee6bCbJWrV69G8+bN2XjOw8PDU9FMnDgR8vLy2LBhA7Zt2wZnZ2eYmJhg/vz5rC86efIkatasialTp1ZyaXl4eP4UeKOUGFCSoUd47PHjx5CVlYWbmxvTVxJSnsVCSfoXKSkpMDMzQ/v27dmxJUuWwMHBAf369Su2aCotoovV27dvo0ePHkwLa/ny5TA1NUVgYCBHlBso1LgqizEsOzsbQ4cOhZqaGrS1tdGiRQt4eXnB398fb9++xYwZMzB48GB2/vTp06GlpYXFixeXsYbiQUJCAqKjo+Hh4QEzMzPeu4UHaWlpiI6Ohre3N1q1aoXmzZvj5s2bHMFtIf/W7/CaON/n0aNH7F0T6kUBwLx586CoqIgpU6YUM4gvWrQI3bp1K/O7KerxaWtrCy0tLZw/f549p7y8PLRp0wZ9+/Zl5wUFBWHFihXMaMVTOr58+YLhw4fDwsIC8+bNY8dzc3Ph6uqKLl268IY+Hh6eCqegoAAfPnxAkyZNsHHjRnY8MzMT/v7+0NLSQmRkJDNMXb9+nR+zeXh4fhm8UaoKM3DgQJbN6N8MU0+ePIGsrCy8vLzw8uXLcl83KysLQ4YMgba2NpYuXcr5zN/fHz4+PmzQAoClS5dCT08P06dPL9P1Dhw4wPl7586dsLGxgbOzM0dIfdmyZTA3N8ewYcOKGaaAsi14P3/+jOHDh8PHxwdDhw7FjRs30KJFC3To0AFmZmYQCATYs2cPO3/Dhg1iN0iXlIXwe4vYgoICbNiwAfb29vD39+e9W3g4ZGdn48mTJ/D19YWqqipmzJjBhJl5ys7ixYtZBs8tW7bA1tYW0dHR7PNJkyZBQ0MDM2bMKGaYEr7XFWE0trGxKWaYmjp1Kho2bIhZs2YhICAASkpKFTLO/MkIPaasrKyYYapdu3acpBm8YYqHh6eiSU5OhqGhIVasWAGAO7czNDSEnp4eFi5ciIyMDHZc3Oa8PDw84glvlKqivH79Gra2tmjYsCEePXoE4L8NUwoKCrCzs8PHjx/LfX2h/oWVlRVmzpwJADhy5AgEAgFOnz5drDy7d+8u08C1ZcsWyMnJYcGCBezYypUrYWFhAQUFBTx+/Jhz/vLly2FpaYnu3bsX8wwrKx8/fsSwYcNgY2PDUqlfunQJoaGhaNiwIR4+fFjsO+IySIsuVL9+/crxbvjeoufbt294+PAh+1xc6srza5kyZQqaNm2K0aNHl9tL8k9mzZo1EAgE2L17NwAww7iHhwfHID5p0iRmHCrax5fFgCH8zuPHj3H37l12XNRjCgCePn2KoKAg6Onpwc7OjoWG85SPz58/IygoCHZ2dlBSUoKenh7zXOM3AXh4eMpLSRsVGRkZsLOz40Q8COd43bt3h5mZGezt7XH8+PFfVUweHh4eALxRqkpz9+5deHt7Q11d/YcMUw8ePECbNm0qLMxKuJtrb2+P7t27Q0ZGhrn8Cq9R9FqlNWA8f/4cISEhaNKkCdNvAgq9pSwtLdGuXbtiqcbnzp2LPn36VGg42adPnxAYGAgLCwummQWApa8Xx9A10TLPnj0bNjY2MDU1hZubG1JSUkr9Gzx/HikpKfj48SNevnxZ4ru9cOFCGBgYYPXq1QD49lJaVq1aBUlJSezdu5dz/Pnz52jVqhXc3Nw4hqnJkydDSkoKmzZtKtd1hQapvXv3wsDAALNmzeIYFm1sbNC4cWNcvHiRHUtOTma6UjwVw+fPn9GrVy+4u7vzBikeHp4KQ3QsvnfvHt6+fcuSEt26dQt16tTBkCFDkJOTg/z8fBQUFKBbt244cuQILC0t4evrW1lF5+Hh+UPhjVJVENFd77t378LLy+s/DVNFJ7IVtTj89OkTgoKCoKysXOLOSnkQ/saXL18wefJkNGnShBMuuGnTJjg7O8PX17eYt1JFhqwIEQ2pEHqHiZZTXAkLC4OKigpWr16NM2fOQE1NDY6Ojqw98fCUxI4dO+Dp6QlFRUWoqKjAwMAAUVFRxcLHRo0aBUVFRcTFxQHgw45+lJJ0+4BCYfFXr17h/v37zDAlarSKioqqkD4pJiYGtWrVwtKlS5GYmFjsc2tra+jq6uLMmTO8oeQnkpiYyMYx/j7z8PBUJCEhIVBXV4eGhgbc3d0RGxsLoFA2o06dOrCxsUH79u1Zfw8Ubn7Y2dmJ/dyXh4dHvJAgniqHQCCggoICIiIyNTWlqVOnkpmZGbVp04YeP35M1apVo/z8fM53JCUlOX9LSFTMo23QoAFNmDCBOnfuTP/88w/NmTOHiIiqVatGAMr8uwCoWrVqRER06tQp+vLlC/3zzz80ceJEWrx4MRER9erVi/r06UMpKSk0adIkunfvHvu+QCAgABVWTyIiFRUVmjBhAllbW1NMTAxNnDiRiIiVUxw5deoUHT58mHbu3EmDBg2irKwsSktLo1evXpGvry89fvy4sovIUwVZt24d9evXjxwdHWnx4sU0f/58atCgAQ0bNoymTZtGnz59YucuWLCAjIyMaMyYMQSABAJBJZZcPMjOzqbjx4+TlpYWvX79mh338fGho0ePUo0aNahp06a0cOFCys3NpXXr1tG2bduIiKh///4ljgE/CgBKSUmhyMhImjhxIgUGBlL16tXpzZs3tGLFCtq6dSsREV29epUkJCRo1KhRlJubW/5K85SIvLw8SUhIUEFBQbFxnIeHh6c0CNcORETnzp2jv/76izZt2kQTJkwgWVlZ6tu3L507d468vb3p77//pubNm1P9+vXJ1taWHj58SEREDx8+JE1NzcqqAg8Pz59KpZrEeDgU9foR9Ti4efPmD3lM/SxE9S8mTJhQYb8bGhoKRUVFrF69GkuWLIGrqyu0tbUxd+5cds7mzZvRtGlThIaGVth1/43Pnz/D398fAwcOFHuvj6tXrzK9rmPHjkFBQQGrVq3Cx48f0aBBA7Ro0YKJ6fPwAMC1a9egrq6OnTt3Fvts0KBBqF69OqZPn468vDzm2REdHY327dvz4XulQKjbZ2Njg8jISPj5+cHMzAwvXrwA8P/+/+7duzAxMcGoUaMq9PouLi4ICgpCXFwcgoOD4eTkBE1NTUhJSWHixInsvNevX1fodXl4eHh4fi6bN2/G+PHjOXNpYVbrxo0b4+TJkwC464gvX75g9OjRqF+/folaqjw8PDw/E94oVUUQXcytXbsWffv2Rf/+/bFhwwZ2/NatW/Dy8oKGhgYTAP+Vi8CKNta8f/8epqam2L59Ozv27NkzBAcHo2HDhli2bBk7fvTo0V9qhEtISGD3VlwMUzdu3GD/X7hwIQsL+vjxI7Kzs9G6dWtmUExOToatrS0EAgE6d+5cKeXlqZqsXbsWTk5OnMyXQr0bAOjcuTMUFRU5ovn//PMPGjZsiGPHjv3Kooo9wpBhTU1N1KtXj+k6Cfs6Yd/z/PnzCu3rMzMzER4ejmbNmqFatWrw9fXFxo0bkZaWhpEjR8LLywuZmZkVdj0eHh4enp/H2bNn2fjx8uVLtGrVCnXq1GFZXYXcvn0bPXv2hLa2No4cOcKOf/jwAbNnz4a+vj7u3LnzK4vOw8PDA4AP36syCMPQxo8fT5MnT6Zq1aqRjIwMDRo0iObPn09ERM2aNaOpU6dSs2bNqGnTpvT27dsKDV/7L1RUVCgyMpJWrVrFwufKQ+3atSkuLo7i4uLYMV1dXRo2bBjVrFmTJk2aRFOmTCEiIjc3t3KFrJSWevXqsZAKcQhHevXqFbVu3ZoCAgJo3LhxNGHCBNLR0SEiIlVVVUpMTKR3795R8+bNiYhISkqKdHR06NGjR7R9+/bKLDpPFePhw4eUlJREtWvXZu+4lJQUe/fCw8MpIyODYmNjiYgoPz+flJSUaMOGDdSoUaNKK7c4oqKiQuHh4dSuXTvS1NRk72K1atU4fY+Ojg5JSEiUqf8TPsM7d+7Q1q1bKTY2lmrWrEmhoaEUFRVFe/fupb1791Lv3r1JWlqavn79SioqKlS9evWKqygPDw8Pz09h1apV1KpVKzaX1tLSovHjx5OdnR2tWbOG7t69y841Nzen0aNHk76+Pq1bt44dV1VVJX9/fzp//jyZmZn94hrw8PDwEPECBpVIVlYW1axZk/29detW2r17N+3Zs4esra1p3759tHjxYho3bhwlJSXRjBkzyNzcnEJDQ0lPT4/U1dV/eZnr1atHRIVx66UxiAnPF/23Zs2aLI79y5cvpKKiQkSFCzArKyt68uQJvX79mqNT86v1nX6l0a88KCsrU1RUFPXu3ZskJSXp0aNH1LhxY8rNzSUpKSlSUVEhaWlpmjNnDiUnJ9PGjRvp27dvpKenxxa74qydxVM+4uLiSElJiYgK29KrV68oMTGRFBQU2DsrbB9169al3NxcysnJIaL/v5PNmzcnGRmZyqmAGKOsrEyhoaE0Y8YMio6Opvz8fBo/fjxJSEgU0+gqyzsqEAho//791K1bN9LR0aGHDx/SoEGDKCAggMzNzcnc3JyIiN6/f0/Lli2jmJgYunDhgtj0fTw8PDx/KqtXr6YRI0bQnj17WF9ORNSmTRsSCAQUGRlJgwcPpjVr1pCpqSkREZmZmVFkZCRpa2sTEbFxRlVVtVLqwMPDw0NExM86K4lu3brR8ePH2d85OTn0zz//UHBwMFlbW9Phw4epb9++tGTJElq4cCHNmjWL5s2bR0RE1tbWNHfu3F/qOVSU0ixYduzYQQMGDKBnz55RZmYm+37t2rWpQ4cOtGPHDlqzZg29f/+eiIjS09MpMzOTAgICaMOGDRXilfW7U6dOHZKWliaiQtF7oXedlJQUZWdnE1Gh0TM/P58WL15MNWrUoEuXLjEDIW+Q+nNZvXo1jRw5khISEoiIyMvLi+rUqUODBw+mrKwskpCQYAYoIqKUlBRq1qwZ88QTwhukyo4wyYKVlRUdPHiQwsPDiYjK5aUp7DM/fvxIa9eupSVLltDNmzcpOjqaYmNjacGCBXTz5k0iIjp69CiFh4fT/v376cyZM2RkZFT+SvHw8PDw/DSioqJo2LBhtHPnTvL19WXHd+3aRURErq6uFBwcTIqKijRo0CC6f/8+O0dXV1esogF4eHh+fwTgV/uVQlhYGE2ePJmqV69OOTk5VL16dYqLi6O0tDSqWbMmubm5UZ8+fWj06NF069YtcnJyooyMDFq2bBkFBARUdvF/mNTUVGrWrBmlpqaSiooKWVlZkaOjI/Xu3Zuds3z5cpo6dSo1bdqU5OXl6f3795SVlUW3bt1iWf74QbM4wvsi9GRJTk6mhIQEunnzJo0YMYK8vb1pzZo1nO8UFBRQamoqycrKkkAgoLy8PD7j0x/M2rVrafDgwbR3717y8fEhosLMcGFhYbR161Zq06YNbdiwgbWRrKws8vPzo8zMTDp58iTvTVPBfPnyhcaNG0c1a9ak1atXl7vfO3/+PO3bt4/evn1Lq1evJkVFRSIiOnToEIWEhJClpSWFhIRQ48aN6cSJE9SsWTPS0NCoiKrw8PDw8PwkYmJiyNvbm7Zv305dunRhx319fen69ev04MEDkpeXJyKikydP0rJly+j+/ft06tQp5iHFw8PDU5XgV6O/GKEBYebMmUREtHLlSgJAPXv2JCUlJVJSUqKLFy8SAOratSsRFWovdevWjTp27EguLi6VWfxSU6dOHercuTM1atSImjdvTmfOnKHg4GA6ceIEGRgY0Pjx42nYsGHUrFkzOnHiBD148IBsbGxo3rx5zBOM9+Ipjmj4ZFxcHNWpU4dq1qxJ2traJC8vT7Nnz6aQkBCqVq0arVy5koiIRo8eTa6uruTm5sZ+gzdI/bmsXr2ahg0bxjFIERHVqFGDJk+eTBkZGbRr1y7S1tamjh07UlZWFj158oS+fv1Kt27d4oTj8lQMQt0+OTk55iFaHsPUkydPaNmyZSQrK0vv3r1jRql27dqRQCCgCRMmUGhoKM2aNYvat29fUdXg4eHh4fmJyMnJkZSUFJ09e5Y6depEEhIS5OfnR69fv6ZLly6RvLw8mz+7urpSXl4enT59mho3blzZRefh4eEpEd5T6hdTVFvJy8uLnjx5QhMnTiQ/Pz+qU6cO3bhxg6ytrWnlypXk6upKQUFBVLNmTYqOjhZL75ajR49Sly5d6OLFi2RiYkJZWVk0c+ZMmj59OpmYmFD37t2pffv2pK+vz/meuNXzVyFqCJg9ezYdOHCAsrOzSUFBgTZv3kwNGjSg5ORkOnDgAI0ZM4YMDQ1JSkqKXrx4QS9evODvKQ9t3ryZ+vbtSwcPHiRPT0923M/Pj1xdXWnw4MH07ds3OnPmDG3fvp2ePXtGqqqqZG5uThMnTiRJSUn+/fzJVJTBb9euXRQYGEidOnWiUaNGcXbJ9+7dS/PmzaM9e/bweiI8PDw8YsT58+fJ09OTunXrRgkJCfTs2TOKiYmhRo0acTzp37x5Q1paWux7/GYvDw9PVYQ3Sv1CRBcZL168YJosvXv3puvXr9O4cePIz8+PZGRkKCIigqZPn05aWlokKytLV69eJSkpKbENZRs2bBgRFYbqEREZGRmRnp4e6ejo0L179+jUqVO0du1a6t+/PxGR2NbzVzJhwgRat24dzZ07lxQUFCgsLIy+fftGR44cIT09PUpPT6fr16/T2rVrSV5enhYvXsyyqPETkj8TABQfH0/6+vpkbGxMmzdvJk1NTSIi6ty5M92+fZtOnz5dLIteamoq1a1bl/3Nt6Gqh7DPzMjIoJycHJKTk2OfRUVF0eTJk6lLly40bNgwzgLl27dvVKdOnUooMQ8PDw9PeTh37hx16dKF4uPj6eHDh2RgYMCZPzs7O5Ourm4xKQceHh6eqgZvlPpFiBqkpk6dSocOHaKZM2eSq6srERH17NmTbt68SePHj6fu3btTjRo16P79+5ScnEwODg4kISEh1p4J69atow0bNtChQ4eodevWVLt2bTpy5AjVrVuXPn78SBcvXqSOHTuKbf1+NadPn6Zx48bR4sWLycHBgQ4dOkT+/v6koKBA3759o/Pnz5Oenl6x74lzG+KpOA4cOECjRo0iV1dXCg0NpbFjx9Ljx4/p0KFD1LhxYzap5Y3D4oHwOcXExNDy5cvp+fPn1LJlS/Lz82PhumvXrqUpU6ZQ9+7daeDAgaSrq8v5Lg8PDw+P+HHp0iXy8PCgjh070uLFi1nSEWEkxuPHj0lKSqqSS8nDw8Pz7/BGqV/MhAkTKCoqitauXUtGRkacUAp/f3+6ceMGhYaGkq+v72/nmWBlZUU3b96kFi1a0N69e6levXrFzuGNJsURNWgKF5AXLlygc+fO0cSJE+nYsWPUq1cvmjx5Mrm4uJCzszPJyMjQ3r17ydDQkP0Ov/j8s3n69CkVFBSQnp4eVatWjWJiYljShFq1atG5c+eoQYMGnL5m3Lhx1LZtW2rdunVlFp3nBzh06BB1796dhg8fTlZWVjRr1iySkpKiAQMGsMQS69ato8DAQBo9ejRNmjSJX6jw8PDwVHF+ZO527tw58vb2pk6dOtGSJUuoc+fO9OLFC3rw4AFJSUnxc2seHp4qD2+U+oU8efKE/Pz8aM6cORwdl9zcXLY46NWrFx06dIi2bt3KOUecEQ6oW7dupTlz5tDGjRvJwsKCN5L8ILm5uZSXl0eJiYmkrKzMJhYfP34kZWVl8vLyombNmtHMmTMpIyODPD096dq1a9SyZUs6cuRIJZeepyqwfft2WrBgAXl6elLfvn2Z2OmJEyeob9++5ODgQNOmTWPedQUFBeTu7k5v3ryhhw8f8pPZKs6rV6/I19eXBg4cSIGBgZSdnU2NGzemGjVqkJKSEg0fPpx69uxJRIV6Yra2tsxTioeHh4enaiI6T05JSSFZWdnvnhsbG0s+Pj6UkpJCBgYGdPfuXd4gxcPDIzbwaZN+IfHx8fTp0ycm6C20B0pJSVFmZiYRFS4YgoODWcjF74BobHtCQgKdPHmSc5zn+5w4cYJGjBjBNIB8fHwoKiqKiIjU1NTo8+fP9PTpU7KxsSGiQgOWkpISnTt3jmJiYiqz6DxVhHXr1tGgQYOob9++1LFjR072nTZt2tCqVavoypUrNGfOHHr69CkRFWZne/fuHT148IAkJSUpPz+/kkrPUxIAqKCggIiI0tPTSUpKinr27EndunWjT58+kaGhIfn5+dHly5fp69evtGTJEpaFs1evXrxBioeHh0eMiIiIoKVLl/7rOU5OTiybLm+Q4uHhETd4o9QvQLh4kJWVJTk5OXr06BERFRplhIu9Xbt2UXR0NBERTZo0iapVq/bbLQTV1NQoNDSU5s+fz+4Bz/dZv3499evXj2rVqkWBgYE0Z84cevv2LUVERFBYWBgREWloaFDDhg1p/PjxtHnzZvL29qYPHz6QpaUly/LI8+dy6dIlmjp1Km3YsIGGDRtGJiYm7LOsrCzKz8+ndu3a0eLFi+nUqVO0YMECsrOzoxcvXtD9+/fZpFbcQ4d/B4Tvcm5uLgkEApKQkKAdO3bQ8OHDSVJSknr06EEKCgo0Y8YMsrGxoZkzZ5Kqqio5ODjQq1ev6NSpU5ScnFy5leDh4eHh+VcWLVpEsbGxRPT/zdv79+9TkyZNiOj/G9ol4ezsTHv37uUNUjw8PGIH31v9BIqm8hb+X11dneTl5WnZsmWkpaVFxsbGVK1aNcrLy6MdO3ZQw4YNyc/Pj33vd1wIenh40M2bN9ngylMyq1evpuHDh9OmTZuoY8eOLLzT2dmZZsyYQevXrycFBQUaPXo0LVq0iEJDQ2nhwoWkrq5O+/btYwapikgpzyN+CF3+Hz9+TNra2hxNqLNnz9LZs2fp6tWrpK6uTpGRkeTr60sSEhLUsWNHMjY25nUoqhjCd/nBgwe0Z88emjhxIiUmJtKECRMoODiYGjRowM59+/YtNW7cmInd1q1bl+bPn0+urq6cjHw8PDw8PFWLmzdv0pIlS8jW1pZq1KhBNjY2BIDevXtHWVlZRPTjUQb82M3DwyNO8JpSFYyoIWDt2rX0999/U0JCAnXs2JE6dOhAr169IicnJ9LR0SE7Oztq1KgRbdu2jRITE+n27dt/xCAiXDD/DuLtP4P9+/dThw4d6MCBA9SuXTtmGBDer5cvX9KAAQMoPT2dYmJiSFlZmYiIvnz5QsrKyiQQCHhjwh/Mx48fSU1NjYgKEyscPXqUzp07R3Xr1qWxY8fS1atXKSMjg7S1tenu3bukrKxMJ0+epJo1a9KtW7fIzMyMGcv5NlT5CMeUe/fukbm5OS1btowMDAzo0qVL9PHjR1qwYAHVrl2bAFBWVhb17duX0tLSqG3btvT27VvatGkT3b9/n1RVVSu7Kjw8PDw8/4EwO3ejRo0oODiYbGxsqFmzZhQWFkZ+fn6csVk4PvAarTw8POIO70ZRwQgNUmPHjqUJEybQP//8Q2lpaeTn50dBQUGkpqZGFy9eJC0tLTp8+DBt3ryZ1NXV6datW3+Mdotw4OQNUsXJzs6m48ePk5aWFr19+5aIiGOQAkDa2toUGhpKt2/fpmfPnrHvqqiokEAgoIKCAt6Y8IeyevVqWr9+Pfu7T58+9PTpU7K2tiYNDQ3avXs3+fv705EjR2jXrl0UHh5Or169opcvXxIRkYWFBQsd5ttQ5SNccDx69IhsbW0pIiKCAgIC6OzZsxQREUFnzpxhYX0AqFatWjRx4kTKyMigDRs20MmTJ+nUqVO8QYqHh4enipObm0tEhZqOc+fOpRcvXtDChQvpwoULpK2tTaqqqpSVlUU5OTmUl5dHBQUF9O7dOyLiNVp5eHjEH37V8RM4f/48/fXXX3T48GFq3rw5ERVqRg0dOpTq1KlDs2fPZqKzOTk5JC0tTUTEeybwUI0aNSgiIoJq1KhBW7dupW/fvtH48eOpWrVqVFBQwCYejRs3purVq1NGRkax3+BD9v5ckpKSKCYmhiZOnEhERLq6unTv3j3avn07SUlJ0ZAhQ6hu3bqsjcjLy5OSkhIL9RLCG4wrH9GQPWdnZ2rcuDFNnjyZiIiCgoJIRkaGQkJCaOvWrTRkyBDmfWpkZET79u0jokJDlby8fCXWgoeHh4fnRxDKNAQHB9OgQYNo1qxZFBERQXPmzKEjR47QmTNnSElJiQBQdnY25eXlkaenJ61ataqSS87Dw8NTfngLSAWQnZ1NNWrUYH9nZmZS7dq1SV1dnfLz80lCQoI6d+5MWVlZNGDAAOrevTsTHK5evToRFS4eeIMUDxFRgwYNKCQkhGbMmMEWl+PHjycJCQlmuPz777/JwsKCDA0NK7m0PFWJYcOG0ZEjR2jLli3k7+9PBQUFpKOjw4xUomRmZtKaNWtIV1eXNDQ0KqG0PN9DNGTPzs6OrKys6NmzZzR8+HBasmQJKSoq0sCBAyktLY0CAgKoTp065O/vz7TkeO0oHh4eHvFANPQuJiaGVqxYQe3atSNXV1fKysqiKVOmkJ2dHTk5OVHHjh0pJyeH4uPjqVq1atSmTZtKLj0PDw9PxcBbQcrJiRMn6N69e+Tk5ERWVlZEVOhl8PbtW0pISKAGDRowo5W3tzepqqrS8+fPOVmwiHjXWx4uKioqNGHChGKGKUlJSUpLS6P169dTkyZNSF1dvZJLylOVkJSUJB0dHYqJiSFvb2+SlZUtpjWRlpZGr1+/pvHjx9OnT5/o5s2bLOyT97KrGkhISNDNmzfJzs6OJkyYQOHh4bRu3TqaMGECEREtWbKE5OTkaPTo0QSAevfuTRISEtSjRw9+LOHh4eERI4R99q5du+j+/fsUGRnJkpO0a9eOJCQkaPr06fT69WsCQDY2Npzv81EWPDw8vwP8CqQcbNiwgfr160evX7/mLAScnZ3J09OTevbsSa9evWJeVDk5OVS9enWqWbNmZRWZR4wQGqaaN29O+/bto/nz5xMRkb+/P338+JFWrVpFAoHgX9MD8/xZ1KpVi8aOHUuHDx+mmTNnEhHX4J2Xl0fBwcE0YMAAkpSUpJs3b7Ise7xBqmqRkZFBQ4cOpUmTJlG1atWoS5cuNGPGDNq+fTsNHz6ciIhkZWVpzJgxFBERQf7+/rRz585KLjUPDw8PT2l5+PAhzZkzhxYuXEh5eXlE9H+NKU9PTwoLC6M3b95QWFgYPXjwgPNd3iDFw8PzO8Bn3ysjO3bsoP79+9OGDRvIzc2N6taty/n88uXLNGnSJHr58iVbHG7ZsoW+fPlC169f5zVbeH6YL1++0MyZM+nWrVv04sULkpOTowcPHpCUlBSfwZCHg9Dbac+ePdS1a1eaPHky864R8vLlS3rw4AHbgeV3Was+Qm+31NRU2rFjB02YMIG6detGS5YsIaJCLbGVK1eSr68vGRgYVHJpeXh4eHj+jaIezPn5+bR9+3aaP38+5ebmUmxsLNWvX59yc3OZ1tTu3bvpxIkTtHr1an4TiYeH57eDN0qVgfj4eOrcuTP5+fnRsGHD2PH09HR6+PAhSUpKkoWFBb1+/ZqmTJlChw8fJg0NDVJVVaV9+/bxxgSeUvPlyxcaP348xcfH04EDB5h3C29M4CkJALR27VoaNmwYDRw4kIYPH05NmjQpdh4fsid+iBqmevbsSYsWLSKi4oscHh4eHp6qR9FxVxhFUVBQQPv27aNZs2aRoqIibd26lRQUFDiGqe/9Bg8PD4+4w69oy0hcXBypqamxv1euXElnzpyhPXv2kLKyMhkaGtLp06dp48aN9PHjR5KRkSEZGRkSCAS8MYGn1KioqFBkZCTJysry3i08/4lAIKBBgwaRjo4O9evXjz59+kS6uroUHh5OUlJSVLt2bSLiMzWKI3Xr1qWuXbuShIQEDRo0iGrUqEGzZ8/mDVI8PDw8VRxRY9LSpUvp6tWr9PXrV3J1daVBgwZRx44dqaCggCIjI6lXr160efNmUlBQKDbn48duHh6e3w2+VysjqampdPjwYTpz5gz5+fnRypUrSVFRkY4fP05Lly6l169f07Rp04io0KBQt25dJibMGxN4yoK8vDzLrsW3oT+XgoKCYsdKcngFQK1ataLz58+Tu7s7Xb9+nTw9PWnz5s2Umpr6K4rK85OoW7cuderUieka8vDw8PBUfYTGpJCQEJo6dSrJycmRlpYWTZw4kfr27UtPnz4lPz8/CgoKovT0dPLw8KDU1FR+zsfDw/Pbw4fvlZHTp09Tx44dSUFBgWRkZGjhwoVkampKCgoKlJSURK1ataL27dvT5MmTK7uoPDw8vwmiu6yPHj2iOnXqkJycHMnKypYYElzUxf/69eukrKxMjRo1+qXl5vk58CF7PDw8POLF7du3ycfHh7Zu3UotWrQgIqI7d+5Q+/btycHBgbZt20b5+f9r777jqq77/48/zxJQQCLR1DJNnGW5d6ZWji4nOBJbLsQFZimOqyw1HOXeK9TUHLkyU0vFTMwFeZWJ4ia3hCSICGf8/vDL+UnWdZkpR+Rxv928yfksXx//4Jzz/Lze77dNCxYs0P79+zV9+nQ6owA89Ije79KLL76oo0ePKjU1VaVKlbptv5eXl4oVK+aCygA8rLI+mA4dOlQLFy6Uh4eHihYtqgULFqh06dK3BVNZx2eFUzVr1nRJ3bg/CKQA4MH2x4dDVqtVDofD+R3BarWqSpUqWrFihZ5//nl16tRJLVu2VNeuXdWtW7c/vQYAPGz4DfcP+Pn53RZIXb58Wa+//royMjKcbyYA8E/c2tC6bds2LVy4UJ9++qmGDBkiHx8f1ahRQ0ePHpXJZJLNZrvtfD7MAgCQ87LefxMTEyVJHh4eunjxog4ePCjp5sMFm82mypUrq2zZsjp//rxz+x+vAQAPKzql7pHExETNmzdPO3fu1KVLlxQdHe38gsgqewD+iawPp3PnztX169cVHh6upk2bSpJeeOEFhYWFqVatWtqzZ4/KlCnDRPgAADwg1q1bp6CgIMXHx6tSpUoKDg7W22+/LW9vbzVu3FiSlJ6eLulmaAUAeQ3R+z1y5swZRUdHy9/fX7t27ZLFYpHVaiWQAnBPnD17VrNnz1b//v2dE5U7HA75+/tr8uTJqlu3rurWrau4uDgCKQAAXCRrQZKsLudKlSqpXr16mjVrlmw2m3r16qXnn39e7du3V0REhKZOnarAwECZzWYFBQW5snQAcAkmOr+HkpOTVbBgQWcrLoEUgLv1x0msHQ6HduzYoREjRig+Pl4xMTEqXLiwc//x48fVuXNn+fj4aNOmTa4oGQAA/J9jx47J399fkjRu3DitWrVKixYtUrly5XT48GGtWbNG8+bNU/HixfXYY49pyZIlslgsfIcAkOcQSt0HrIgE4J+4dVJTu92utLQ0eXp6SpL279+vvn376urVq9q+fXu2YOrs2bMqWrQo808AAOBCU6dOVVhYmCZMmKCAgACVKFFC9evXl5eXlzZu3Og8LiUlRR4eHjKZTDIYDAy/B5An8c3lPiCQAnC3bg2kPvnkE7Vt21Z16tTR4MGD9fPPP6t69eqaNm2aHnnkETVu3FiXL192nlu8eHEZjUbn0AEAAHD//dUz/k8//VTjxo3T9OnT9emnn+rXX3/V1KlTnfsLFCggs9ksg8Egh8NBIAUgT6JTCgAeAH/ssBw2bJhmz56tXr16yWAwaMGCBXrmmWf09ttv6+WXX9aePXsUHh6ugwcP6tixY/Lx8XFd8QAAQKmpqc7O5v79++v48eNq3ry5vvzyS507d07+/v7KyMjQlClT9NRTT7m4WgB4MNApBQAulp6eni2QiouL04oVK/T5559r5MiRGjFihDZt2qTr169r0qRJ+u2331SzZk0NHz5cHTp0kJeXlwurBwAgb7q1M3nChAl68803tXLlSklSQECA/Pz8VL58ea1du1Y1a9ZUTEyMvv76a+3atctVJQPAA4dQCgBcqHv37lq2bFm2bSaTSenp6XJzc5MkWa1WVaxYUTNmzFBUVJS+/vprGQwGNWrUSDNmzJDJZJLNZnNF+QAA5ElJSUnO4faxsbFq2bKlMjIyNHHiRAUHB+u5556T1WrV0qVL5e7urnnz5mn69OkaNmyYXn31VRdXDwAPDkIpAHARm82mUqVKqXPnzpJuhk/SzVAqLS1Nhw4dynZshQoVVLlyZZ0+ffq2a7FSDwAAOeOrr75S79699euvvyosLEzVq1eXv7+/5s2bp4EDByoqKkotW7bUM888owULFmjOnDmSpBYtWmjkyJEym83O93wAyOsIpQDABRwOh0wmk4YNGyaLxaJ58+Zp1KhRSklJUenSpTVgwACFhoZqw4YNMpvNzu6p1NRU+fr6urp8AADyrPz58+u7775T8+bNtXjxYv30008yGAwqUqSI2rZtq/j4eJUpU0a7du2Su7u7Jk6cqPj4+GzXYFJzALiJ34YA8ADYvXu3YmJiVKBAAfXp00dvv/22zp07p5YtW6pPnz7y9vbWvn37ZLfbFRwc7OpyAQDIkxwOhxo3bqwWLVooMjJSzZo1cw63l6TMzExZLBbNnz9f3377rby9vXX8+HH5+/u7sGoAeHCx+h4A5LD9+/erevXqkqTRo0erYsWKatGihcLCwrRnzx517NhRffv2lbu7u+bPn6+FCxcqf/78Klq0qObMmSOLxSKbzcaQPQAAckjWKrlZ779z586VyWTSRx99pNq1a2vgwIGqXLlytmOlmyGV2WyWwWCQ3W53zkMFALiJUAoAclBCQoJKlSqlkJAQeXh4aM6cOdq1a5eeeeYZWa1WhYaGau/everYsaN69eolT09PXbt2TQUKFHBew2q10vYPAEAOuTVMunjxory9vSVJHh4e+vbbbxUcHKy6detq0KBBeu655yRJq1evVkBAgPMatwZVAID/j1AKAHKQw+HQtm3b1Lx5c7m7uysmJkZlypTRjRs35Obm5gym9u/fr/bt2yskJEReXl7ZzudDLQAAOePW990xY8Zow4YNSk1NlcVi0Zw5c1S5cmVFRUWpe/fuql69ulq1aqVly5Zpz549unjxIu/ZAPA/0D8KADnIYDDIaDTKZrMpMzNTkydPliS5ubkpIyNDZrNZU6dOVa1atTR16lR9+eWXt50PAAByRtb77nvvvafx48erX79+mjNnjtLS0tSmTRudP39ejRo1UmRkpH799VdNmDBBqampOnv2rAwGg3j+DwD/HeM/AOA+y3rKmvV3o0aNlJCQoIMHDyowMFCZmZmaPXu28uXLJ0kymUyaPHmyypUrp1dffdXF1QMAkLdkDdfLet++cOGCtm7dqkWLFql58+Zav369zp49q4iICBUtWlQ2m00NGjTQF198IavVqscff1xGo5Hh9gBwB+iUAoD7yG63O5+yXrx4UZcvX5bdblfx4sXVqFEjLVq0SEuWLFHv3r2d5/Tq1UsbN25U3759ZTKZZLPZXFU+AAB5zoULFyTJ2eV05coVHTlyRA0aNNDmzZsVFBSk0aNHq1evXrp27ZomTJiglJQUFStWTCVKlJDRaJTdbieQAoA7wJxSAHCf3DoxakREhFavXq309HR5enpq1apVKl68uOx2u9atW6fXX39dVapUkd1u16VLlxQXF8eHWQAActiBAwdUtWpVrVy5UoGBgZJuLjASEBCgJ554QosWLdLEiRPVvXt3SdKRI0cUGhqqgQMH6qWXXnJl6QCQK9EpBQD3SVYg9e9//1tTp05VWFiYIiMj9fvvv6t58+bau3evjEaj2rZtqx07dqh06dKqU6eODh06JLPZTIcUAAA5rGjRogoODlZQUJDWrVsn6WYoVaxYMUVGRqpz587OQCotLU0DBgyQwWBQ48aNXVk2AORadEoBwH303Xff6Z133tEnn3yihg0basOGDercubMKFy6s1NRUrVu3TjVq1LjtPOahAADANS5evKiIiAhNnTpVq1atUtu2bXXlyhV17NhRiYmJKlu2rEqVKqXo6GglJycrJiZGFoslW4c0AODO8FsTAO6hP3Y3FShQQEFBQWrYsKG+/fZbdenSRaNHj9aePXuUP39+9ejRQ9HR0dnOcTgcBFIAAOSQM2fO6LfffnO+LlKkiIYMGaI+ffooMDBQX3zxhR555BF9/vnn6tChg65du6bjx4+rbt26io2NlcVikdVqJZACgLtApxQA3CO3PiFds2aNqlatqieffFLnz59X4cKF1bJlS1WqVEljx45VWlqaWrVqpV27dunFF1/U+vXrXVw9AAB5z6pVq9S9e3cVK1ZMPXr0UJEiRdSpUydJUkZGhgYOHKipU6dq+fLlat++/Z92Q9lsNplMJleUDwC5HnE+ANwDt35IHTp0qAIDAzVq1ChJN+enSE5O1vHjx/Xcc89JujnfVOHChRUTE+OcswIAAOScjIwMbdu2TVarVYmJiVqzZo0GDx6sSpUqKTAwUN9//73atGmjoUOH6tVXX9W3334ro9GoPz7TJ5ACgLvH+BAA+IdufULav39/ffbZZ3rjjTdktVqdxzz66KMqXry4Ro0apStXrmj58uVKS0tT2bJlnUtH0/YPAEDOyZcvn95//31ZLBadPHlSTz/9tL744gutWbNGmzZtUnBwsNLT0+Xv7y+j0aimTZtq3759qlatmqtLB4CHBsP3AOAuORwOGQwG5+vQ0FAtWrRIMTEx2rdvnz744AMdOHBAZrNZZrNZp06dUs+ePfX777+rcOHCWrVqFROjAgDgYufOnVNERIT27Nmjt956S3369JEkHT58WBcuXNCCBQt0+PBh/fbbb4qLi2PeRwC4hwilAOAu1K9fX127dlXXrl0lSZs2bdI777yjxYsXq0qVKvriiy8UHh6uuLg45cuXL9u5ycnJKliwoAwGA6vsAQDwADh//rwiIiK0d+9etW7dWkOHDnXuy3oIlfU3790AcO/waB4A7kL//v3VuXNn5+sXXnhBUVFRqlKliiSpYsWKcjgcSkpKknTzA+1HH32khIQE+fj4OD/c8qEWAADXK1q0qIYNG6aaNWvqyy+/1NixY537slbWNRgMstvtvHcDwD1EpxQA/AMfffSR0tLS9NFHH2XbfuzYMVWpUkUHDhxQ6dKl1bx5cx04cEBnzpxhQlQAAB5QFy5cUEREhGJiYtSoUSPnoiUAgPuDTikA+AcKFCig0aNHa9y4cc7VeGw2m9zc3OTj46O0tDQFBgbq9OnTSkhIkMlkkt1ud3HVAADgzzz22GMaOnSoSpcurUuXLt220h4A4N6iUwoA7tBfTUg+e/Zs9e7dWx999JHCw8OdQ/MqVqyokydPqkSJEvrll19ksViYhwIAgFwgKSlJPj4+MhqNty1sAgC4d/hmBAB34NZAKjY2VmlpaapXr54MBoN69uwpu92uvn37SpIGDRqkzMxM+fn5ycvLS7t27ZLZbCaQAgAgl/D19ZX01w+kAAD3Bt+OAOAOZH0gHTRokD777DOlpKSoUqVK+uCDD9SoUSP16tVLDodDoaGhcjgcGjJkiDZs2KD8+fPLZDIRSAEAkAsRSAHA/cVvWQD4L24d4fzDDz9o8+bNWrJkiX744Qe5ublp6NCh+vLLL5WRkaHevXtr2rRpGjZsmBYsWCAvLy/nHFIEUgAAAACQHd+SAOAv/LFl39fXV6+88ooaN24sSdq8ebPatGmjiIgIGQwGtWzZUiEhISpSpIhatmzpPI+nrAAAAABwOyY6B4D/YfTo0dqxY4fi4+NVuXJlrVq1yrnvxo0batu2rS5fvqzQ0FB16tTJ2RXFkD0AAAAA+Gs8vgeAP7g1q581a5YiIiJUrVo1FSxYULt379akSZOUkZEhSXJzc9PatWslSVFRUdlCKAIpAAAAAPhrdEoBwC1uXfY5KipKGzZsUMOGDdWiRQtlZGSoe/fuOn78uF599VWFhITIYrFIkjIzM2UymRiqBwAAAAB3iG9PACCpa9euiouLcwZSW7duVWhoqJYuXSofHx9JUr58+TRt2jSVLl1an3/+uebMmePsmLJYLDIajbLb7a66BQAAAADIVQilAOR5MTEx8vLykr+/v3Pbs88+q+bNm8tqtWrhwoXOsMnb21vTp09XuXLlNHHiRK1fvz7bteiUAgAAAIA7w/A9AND/H7Y3f/58VahQQXXr1lVycrLGjh2rLVu2qFmzZhoxYoSzk+rq1auaMmWKhgwZIpPJ5OLqAQAAACD3IZQCkKfZbDZnqHT58mW1bdtWqampmjt3rmrUqKGkpCSNGTNG3333nZo0aaIPP/zwtm6oW68BAAAAALgzjDMBkGdduHDBGSbNmTNH3t7eGjVqlJ566in16tVLe/fula+vrwYPHqyGDRtq69at6t+/v/6Y5RNIAQAAAMDfRygFIE+KiopSpUqVdODAAfXv31+hoaG6ePGiGjZsqL59+6p48eLq3bu3M5gKDw/Xs88+q/T0dFeXDgAAAAAPBYbvAcizGjZsqIMHD+rGjRvasWOHqlSp4ty3bds2TZ48WefOndOMGTNUo0YNpaSkyNPTUwaDwTkHFQAAAADg7tApBSDPsVqtkqRXXnlFSUlJ8vT0VGZmpjIzM53HNG7cWGFhYXriiSfUrl07xcXFycvLi0AKAAAAAO4RQikAeUZWY6jZbJYk/etf/9KJEyf09NNPKzAwUDt37nQGVtLNYGrAgAFq3769ypYt69xOIAUAAAAA/xzD9wDkCXa73blq3rlz52Q0GvXoo4/KYrFIkl544QWdOHFCS5Ys0fPPPy+DwaARI0YoPDxcbm5uklhlDwAAAADuJUIpAHnKsGHDtGnTJp0+fVpNmjTRiy++qG7dukm6OcfUiRMn1Lt3b23dulXx8fE6ceIEQRQAAAAA3AeEUgAeard2SM2bN0/Dhg3TxIkTlZiYqNjYWG3dulVhYWF69913JUmdO3dWYmKiLBaL1qxZI4vFku0aAAAAAIB7w+zqAgDgfsoKk/bt26fY2FhFREQoKChIkpSQkKBSpUpp5syZKl++vFq0aKElS5YoKSlJjzzyiAwGg6xWq3MOKgAAAADAvcOjfwAPHYfD4ZzU3G63a/fu3WrQoIEWLFiga9euOY8rUaKE3nzzTRUrVkw///yzc7uvr69zlT0CKQAAAAC4PwilADx0DAaDc4U8o9Go2rVra/z48TKbzfr222917Ngx57ElS5bUY489ptjY2D+9DgAAAADg/qAFAMBDJSoqSt9//7127typp556Sk8//bT69eun3r17y+FwaNSoUZo9e7aCg4NVpkwZXb16VadPn1b9+vVdXToAAAAA5ClMdA7goZE1kXmdOnXk5uammJgYnT9/XrVq1dK6devk5eWlCRMmaMyYMSpcuLCqVq2qlJQUnTp1Snv27FG+fPlcfQsAAAAAkGcQSgF4KKxbt05vvPGG5s+fr9atW8tisejSpUtasWKFPvjgA5UvX147d+6UJM2aNUv9+/dX3bp11alTJ/Xo0UOSlJmZKYvF4srbAAAAAIA8gzmlAORqDodDNptNK1asUI8ePdSuXTtZLBY5HA4VLlxYXbp00ZgxY3TgwAENGDBAkhQSEqIJEyboxIkTOn36tC5duiRJBFIAAAAAkIMIpQDkagaDQTdu3NDu3btVsmRJSTeDqqxJygsUKKCAgAA1aNBAu3btcq7K17t3b7399ttavHixRo8erbNnz7rqFgAAAAAgTyKUApDreXh4yGKxKC4uTlL2VfPsdrt8fX3VqVMn/fLLL7p06ZIyMzMlSWFhYQoJCdE333zDfFIAAAAAkMMIpQDkalnD9/z9/RUVFaWDBw9m22c03vw1d/78eVWvXl1FihSRxWKR3W6XJA0ePFg7d+6Un5+fS+oHAAAAgLyKUApArmc2mxUREaHTp09r+PDhOnLkiOx2u7NjKjMzU1FRUapQoYLzHKPR6AymfHx8XFE2AAAAAORprL4HINez2+0yGo1avHixQkJCVLlyZXXs2FGtWrXS4cOHNXXqVJ06dUoHDhyQ2WzONucUAAAAAMA1CKUAPDQcDoe+//57hYSEKCEhQWlpaapcubJKlCihlStXymKxyGazyWQyubpUAAAAAMjzCKUA5Ap/1d30Z9uvXr2qxMREnTlzRv7+/ipatKgMBoOsVqvMZnNOlQwAAAAA+C8IpQA88LKG50nSmTNnZLfb5e7ursKFC9+2/9af/+oaAAAAAADXI5QC8EC7tRNq+PDh2rp1q44dO6aaNWuqXr16Cg8Pd3GFAAAAAIC7QdsAgAdaViA1YsQITZs2Te+//742b94sDw8PDRs2THFxcS6uEAAAAABwNwilADzwEhMTtWPHDi1atEhNmjTRhQsXtHHjRs2aNUsVKlRQRkaGq0sEAAAAAPxNhFIAHngGg0EnTpxQiRIltGHDBrVr107jxo1T9+7ddePGDc2dO1exsbGuLhMAAAAA8DcQSgF4oNjt9tu2GQwGlS1bVjNmzNDrr7+ujz/+WCEhIZKkU6dO6ZtvvtG5c+dyulQAAAAAwD9AKAXggXHrCnnnzp1TcnKyJMnX11dNmjTR7Nmz1bJlS/Xs2VOSdPXqVQ0YMECpqalq3ry5q8oGAAAAANwFs6sLAIAsWYHU8OHDtWzZMnl6euqZZ57RwoULNWDAAF2+fFmffPKJ0tLS5HA4dPnyZV25ckUxMTEymUzZQi0AAAAAwIPN4HA4HK4uAkDedmuYtHTpUvXv31/jxo3TyZMntXLlSnl5eWnPnj2SpIULF+rHH39USkqKKlasqLCwMJnNZlmtVpnN5OwAAAAAkFsQSgFwKYfDIYPBIElas2aNkpOT5ebmpqCgINlsNv3www9666235Ovrq71790qSMjMzZbFYnNew2WwymUwuqR8AAAAAcHcY5wLAJV588UX99NNPzkDq8OHDCg4OVvfu3WWz2SRJJpNJdevW1YIFC5ScnKw6depIUrZAKus4AAAAAEDuQigFIMclJyerVq1aKleunHNb8eLFNW3aND311FNavHixc7vRaHQGUwcPHlRwcLArSgYAAAAA3GMM3wPgUmPHjlWtWrXUsGFDXbt2TRs3blT//v1Vu3ZtffHFF87j7Ha7fvnlF1WsWJHOKAAAAAB4CNApBSBH2e1258/Xr1/Xzp071bRpU+3atUsFChRQ8+bNNXHiRO3fv1/t27d3Hms0GlWpUiWZTCbn8D4AAAAAQO5FKAUgR2Wtsmez2eTh4aFPP/1UHTt2VJMmTRQdHa0CBQrolVde0SeffKLY2Fg1btz4tmvQKQUAAAAAuR/rpwPIEXa73RlIjR8/XrGxsZozZ478/Pw0YcIE2Ww2NW3aVJs3b1a9evXUvHlzpaWlad26ddnOBQAAAAA8HPiWB+C+uzVU2rt3r5KSkvT5559r+PDhSk9PV6FChTR58mS1bt1azZo1cw7l69Chg1atWiWj0Zht2B8AAAAAIPcjlAJw32UFUuHh4QoKClJ6erpefPFFTZkyRf369csWTLVt21b169fXzz//LHd399uuAQAAAAB4ODB8D0COiIqK0uzZs/XVV1+pfv36ysjI0IYNG9S5c2cZDAZNnjxZhQoV0scff6zSpUurQoUKri4ZAAAAAHAf0XoAIEekpKTI19dXlSpVkiTly5dPbdu21Zw5czRv3jznUL4iRYro/fffl9lsltVqdXHVAAAAAID7hVAKwD3ncDhu21aiRAklJCQoOjo62zE1a9ZUoUKF9Mknnyg8PFySZDAYJElmM82cAAAAAPCwIpQCcE/Z7XZnqHTt2jXn9ooVK6pTp06KiIjQtm3bnMf4+PgoICBAixcv1owZM7R27VpXlA0AAAAAyGGEUgDuGYfD4ZyQ/OOPP9Zrr72mVq1aaceOHTKZTAoLC5Ofn59CQ0M1efJkrV69Wq+99pqOHj2qJk2aqEyZMoqPj3fxXQAAAAAAcgKhFIB74tYOqfHjx2vUqFGqWLGiEhIS1KNHD82aNUtVqlTRyJEj9corr2j48OH64IMPlJGRoU2bNqlQoULy9vaWt7e3i+8EAAAAAJATDI4/m/wFAO6Qw+FwhlGSFBcXpwkTJqhTp05q3LixJCkkJETR0dEKDg5W9+7d5eHhoUuXLsnNzU0FCxaUJA0aNEjLly/Xd999p5IlS7riVgAAAAAAOYhOKQD/yK+//ur8efny5Xr55Ze1fft2eXl5ObfPmjVL9erV09y5czV37lz99ttvKly4sAoWLKgffvhBffr00aJFi7R27VoCKQAAAADIIwilANy1rLDp4sWLkqR27dqpbt26SkhI0M6dO5Wenp7t2Oeff16jR4/W1q1bndvLlCmjqlWrKjo6WlWqVMnxewAAAAAAuAbD9wDclTlz5qh3795auXKl2rZtK7vdLqPRKLvdroCAAB0/flz//ve/1aZNG7m5uTnP+/jjjzVgwACZTCbn0L8/DgEEAAAAADz8CKUA/G2zZ89Wnz59nIFUlvj4eJUtW1Z2u11t2rRRQkKChgwZclswJUk2m00mkymnSwcAAAAAPCAIpQD8LcuXL1enTp20fft2NWjQwLk9KChIhQsXVkREhPLnz+/smEpISFC/fv302muvyWKxuLByAAAAAMCDhDmlANyxpKQkffHFF/Lz88vW5dSuXTvFxsZqwIAByp8/v6xWq4xGo1avXi13d3dt376dQAoAAAAAkA2dUgD+ll27dmnWrFn6z3/+o5kzZ2rmzJk6cOCA1q9fr5IlSzrnh8oanudwOORwOGQ0koEDAAAAAP4/QikAd+TWycj37NmjyZMna9OmTfLw8NDRo0eVP3/+bPNENWnSRCEhIQoICJAk50ToAAAAAABIDN8DcIeyVsmTpFq1aiksLEzNmzeXt7e39u7dK0kymUyy2+1q2bKljhw5opYtWzrPJ5ACAAAAANyKb4kA7tgfg6nQ0FBVqVJF/fr1U1RUlCSpRYsWio+P17Fjx2SxWGS1Wl1ZMgAAAADgAcXwPQB/2x+H8k2ZMkW//PKLMjIyZLPZdPDgQWcgZTabXVwtAAAAAOBBRKcUgGwcDofsdvtf7pP+vGOqWLFi8vX1JZACAAAAANwROqUAON06Ubkkbdu2TcnJyapcubKeeOIJWSyWbBOW39oxdejQIZUvX15Go5FACgAAAADwPxFKAZAkDRkyRAULFtTAgQNlMpk0YMAALVu2TGlpaXryySfVqVMn9e3bV56enn8ZTEmssgcAAAAAuDO0MgDQ9evXdfDgQSUlJcnb21tPP/20du/erdWrV+vxxx/XuHHjtHbtWqWkpGjIkCHZgqlbAymJVfYAAAAAAHeGTikgj8vqdEpJSVG/fv105swZlS1bVvny5dOkSZMkSZmZmXrvvfe0fft2vfTSSxo8eLA8PT1v65ICAAAAAOBO0dIAQHa7XV5eXpoyZYqKFi2qJUuW6MCBA879FotFI0eOVMOGDRUVFaWhQ4fq+vXrBFIAAAAAgLtGKAXkYXa7XQaDQUajUSdPnpS3t7dmzpypDh066MyZM5o0aZIyMjIk3QymRo0apWeffVbp6elyd3d3cfUAAAAAgNyM4XtAHnXrhOQjRozQ1q1bFRERoXr16iklJUV9+vTRsWPHFBQUpJ49e8pisUi6uUJf1lxSDN8DAAAAANwtOqWAPCorkBo2bJhmzJihfv366YknnpAkeXl5afr06fL399fSpUs1d+5cZWZmSpJMJhOBFAAAAADgHyOUAvKwgwcPatWqVZo3b57atWunEiVKSJKsVqszmCpXrpwmTJigL7/8Mtu5BFIAAAAAgH+CUArIQ+x2e7bX165d05UrV1SlShVJN1fikySz2awbN27Iy8tLkyZN0ptvvqk2bdrkdLkAAAAAgIeY2dUFAMg5WUP2Ro8ereLFi6tGjRqSpH379ql48eIyGAyy2WwymUz66quv5OnpqaZNm+q9996TJOc+AAAAAAD+KTqlgDzg1g6pzz77TNOnT1fFihXl4+Oj8uXLa8mSJdqzZ4+km3NG2Ww2zZo1S+vXr892HQIpAAAAAMC9wup7QB6yc+dOrV69WmXKlFGvXr0kSdu2bVNoaKiKFSumOnXq6IknntDixYuVlJSk2NhYmc00VAIAAAAA7j06pYA8wOFw6NChQ3r55Zc1efJkJSUlOfc1btxYc+fOVbly5bRo0SItWrRIRYsWVUxMjMxms2w2mwsrBwAAAAA8rOiUAvKQ9evXKzg4WM8884zGjx+vZ599Ntv+9PR02e125c+fX9LNVfjolAIAAAAA3A90SgEPoT+uspelZcuWmjZtmuLi4jRr1iwdOXLEuc9ms8nd3d0ZSDkcDgIpAAAAAMB9wzdO4CFjt9udq+wtXbpUJ0+elM1mU2BgoCpUqKDAwEBlZmZq4MCBMhgMCg0NVbly5W6bxNxgMLiifAAAAABAHkEoBTxksgKp8PBwRUZGqnHjxjpw4ICioqL0+uuv680339Srr74qg8Gg8PBwXblyRWPGjFGJEiVcXDkAAAAAIC8hlAIeQjNmzNCyZcu0ceNGVatWTStXrlTHjh2VlpamzMxMde/eXR07dtT169e1bt06Pf74464uGQAAAACQxzDROfCQSU9P19ixY+Xj46OwsDCtXr1a3bp105AhQ7RlyxadOHFC4eHh6tKlS7Y5o24d9gcAAAAAwP1GKAXkcg6HI9v8Tw6HQ0eOHJGPj49SUlLUqlUr9ezZU/3799fu3bvVpEkTPf744xo5cqQCAwNvOx8AAAAAgJzA8D0gF/tjd9P169fl4eGh8uXLS5K2b98ud3d3dezYUZKUlJSkZs2aqUKFCmrbtq0kJjQHAAAAALgGY3WAXOrWQGr8+PEKCgpSlSpVNGHCBO3bt0+SlJGRoRs3bigmJkaJiYmaNWuWypUrpw8//FBGo1E2m82VtwAAAAAAyMMYvgfkckOGDFFkZKTCw8NVoEABhYeH6+WXX9b8+fOVkpKi9u3b6+zZs7JarfLz89PevXtlsVgYtgcAAAAAcCmG7wG52P79+7V69WqtXbtWtWvX1v79+5WSkqIWLVrIy8tLXl5eWrNmjfbt26e0tDQFBATIZDLJarVmm+QcAAAAAICcxrdSIBe5ceOG3NzcnK8dDocKFiyo2rVra8WKFerWrZumTp2qN954Q6mpqdq1a5caN26sf/3rX85zbDYbgRQAAAAAwOWYUwrIJb755htNmTJFe/fudW7LyMjQuXPnNG/ePAUHB2vs2LHq1auXJGnPnj2aNWuWTpw4ke06JpMpR+sGAAAAAODPEEoBuUBkZKS6du2qkydPZpsHql69emrQoIGCg4M1YMAA9e7dW9LNjqpJkybJaDTK39/fVWUDAAAAAPCXGMMDPOCWLVumvn37KjIyUs2aNZO3t3e2/f369dOFCxe0YMEClSxZUleuXNHXX3+ts2fP6scff5TRaMy2Uh8AAAAAAA8CVt8DHmCXL19Whw4d1K5dO/Xp08e5PTU1Vb/88ovMZrOqVaum+Ph4jRkzRlu2bJG/v7+eeuopzZo1S2azmUnNAQAAAAAPJL6pAg+4S5cuqXjx4s7XM2fO1LZt27Rq1SoVKVJEFStW1NatW/Xpp58qMTFRhQoVch5LIAUAAAAAeFAxngd4wF29elUbNmzQtm3b1K5dO82cOVN+fn7avHmzpk6dqpMnT2rkyJGSJB8fH+d5DoeDQAoAAAAA8MDiGyvwAPPz89OCBQsUGBiobdu2ycvLS5MmTdJzzz2nRx99VFeuXFHBggVls9kkKVsIdeuE6AAAAAAAPGgIpYAH3IsvvqijR48qNTVVpUqVum2/l5eXihUr5oLKAAAAAAC4e0x0DuRSly9fVpcuXZSYmKjo6GiZTCZXlwQAAAAAwB2jUwrIZRITEzVv3jzt3LlTly5dcgZSNpuNYAoAAAAAkGsw0TmQy5w5c0bR0dHy9/fXrl27ZLFYZLVaCaQAAAAAALkKw/eAXCg5OVkFCxaUwWCgQwoAAAAAkCsRSgG5mMPhYJU9AAAAAECuxPA9IBcjkAIAAAAA5FaEUgAAAAAAAMhxhFIAAAAAAADIcYRSAAAAAAAAyHGEUgAAAAAAAMhxhFIAAAAAAADIcYRSAAAAAAAAyHGEUgAAAHdo+/btMhgMSk5OdnUpAAAAuR6hFAAAyNPeeusttWnT5r7/Oz/++KPat2+vIkWKyN3dXWXKlFGPHj0UHx9/x9fIqVoBAAByAqEUAADAffbVV1+pdu3aunHjhpYsWaK4uDgtXrxYBQsW1Hvvvefq8u6Kw+GQ1Wp1dRkAACAXI5QCAAD4Pzdu3FBoaKgKFy4sd3d31a9fX/v27bvtuOjoaD377LNyd3dX7dq1dfDgwb+8Zlpamrp06aJXXnlFX375pV566SWVKlVKtWrV0ieffKLZs2dLkmw2m7p166ZSpUrJw8ND5cqV0+TJk53X+eCDD7Rw4UKtW7dOBoNBBoNB27dvlyT9+uuv6tChg3x8fOTr66vWrVvr1KlTznOtVqtCQ0Pl4+OjRx99VOHh4XrzzTezdV39r3vPGrq4ceNGVatWTW5ublq8eLGMRqP279+f7Z4nTZqkJ598Una7/e/89wMAgDyGUAoAAOD/DBo0SKtWrdLChQsVGxsrf39/NW3aVElJSdmOGzhwoMaPH699+/bJz89PLVu2VGZm5p9ec/PmzUpMTNSgQYP+dL+Pj48kyW636/HHH9fKlSt16NAhvf/++xo6dKhWrFghSXr33XfVoUMHNWvWTOfPn9f58+dVt25dZWZmqmnTpvLy8tL333+v6OhoeXp6qlmzZsrIyJAkjR07VkuWLFFkZKSio6N19epVrV279q7uffDgwRozZozi4uLUqlUrvfTSS4qMjMx2TGRkpN566y0ZjXzUBAAAf41PCgAAAJKuXbummTNn6uOPP1bz5s1VsWJFzZ07Vx4eHpo/f362Y4cPH66XX35ZlSpV0sKFC3Xx4kWtWbPmT6979OhRSVL58uX/679vsVj04Ycfqnr16ipVqpQ6d+6sLl26OEMpT09PeXh4yM3NTY899pgee+wx5cuXT8uXL5fdbte8efNUqVIlVahQQZGRkUpISHB2Uk2dOlVDhgxR27ZtVb58eU2bNs0Zhv3dex8xYoRefvlllS5dWr6+vurevbs+//xz3bhxQ5IUGxurn3/+WV26dLnj/3sAAJA3EUoBAABIOn78uDIzM1WvXj3nNovFopo1ayouLi7bsXXq1HH+7Ovrq3Llyt12TBaHw3HHNUyfPl3VqlWTn5+fPD09NWfOHCUkJPzXc/7zn//o2LFj8vLykqenpzw9PeXr66v09HQdP35cv//+uy5evKiaNWs6zzGZTKpWrdpd3Xv16tWzvW7Tpo1MJpMzlFuwYIEaNWqkkiVL3vF9AwCAvMns6gIAAAAeZmXLlpUkHT58OFuY9UfLli3Tu+++q/Hjx6tOnTry8vLSxx9/rD179vzX66empqpatWpasmTJbfv8/Pz+WfF/okCBAtle58uXT2+88YYiIyMVEBCgpUuXZpsLCwAA4K/QKQUAACCpdOnSypcvn6Kjo53bMjMztW/fPlWsWDHbsbt373b+fOXKFcXHx6tChQp/et0mTZqoUKFCGjdu3J/uT05OlnRz8vS6deuqd+/eqlKlivz9/XX8+PFsx+bLl082my3btqpVq+ro0aMqXLiw/P39s/0pWLCgChYsqCJFimSbtNxmsyk2Nvau7v3PdO/eXVu2bNGMGTNktVoVEBDwP88BAAAglAIAANDNDqBevXpp4MCB2rRpkw4dOqQePXooLS1N3bp1y3bsiBEjtHXrVh08eFBvvfWWChUqlG0luz9ed968edqwYYNatWqlLVu26NSpU9q/f78GDRqkkJAQSVKZMmW0f/9+bd68WfHx8XrvvfduW/mvZMmS+umnn3TkyBElJiYqMzNTnTt3VqFChdS6dWt9//33OnnypLZv367Q0FCdOXNGktSvXz+NHj1a69at05EjRxQWFqYrV67IYDD87Xv/MxUqVFDt2rUVHh6uTp06ycPD4+/+9wMAgDyIUAoAAORpdrtdZvPNGQ3GjBmjwMBAvf7666pataqOHTumzZs365FHHsl2zpgxYxQWFqZq1arpwoULWr9+vfLly/eX/0br1q21a9cuWSwWBQUFqXz58urUqZN+//13jRo1SpLUs2dPBQQEqGPHjqpVq5Z+++039e7dO9t1evTooXLlyql69ery8/NTdHS08ufPrx07dqhEiRIKCAhQhQoV1K1bN6Wnp8vb21uSnGHRG2+8oTp16sjT01NNmzaVu7t7tnu6k3v/K926dVNGRoa6du16R8cDAAAYHH9n9k0AAICHTLNmzeTv769p06a5upQcY7fbVaFCBXXo0EEjR468J9ccOXKkVq5cqZ9++umeXA8AADz8mOgcAADkSVeuXFF0dLS2b9/uHEL3sDp9+rS++eYbvfDCC7px44amTZumkydPKigo6B9fOzU1VadOndK0adOcXV8AAAB3guF7AAAgT+ratatCQkL0zjvvqHXr1q4u574yGo1asGCBatSooXr16unnn3/Wli1b/nJy9r+jb9++qlatmho2bMjQPQAA8LcwfA8AAAAAAAA5jk4pAAAAAAAA5DhCKQAAAAAAAOQ4QikAAAAAAADkOEIpAAAAAAAA5DhCKQAAAAAAAOQ4QikAAAAAAADkOEIpAAAAAAAA5DhCKQAAAAAAAOQ4QikAAAAAAADkuP8HDhJzaCCkgI8AAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "jobs_df.columns"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "cJexTEq-EQoD",
        "outputId": "a23583ff-8858-4558-884f-b6fa21171b37"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "Index(['id', 'title', 'key', 'date', 'link', 'description', 'job_type',\n",
              "       'experience_level', 'budget', 'category'],\n",
              "      dtype='object')"
            ]
          },
          "metadata": {},
          "execution_count": 40
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# prompt: print the title for other\n",
        "\n",
        "# Assuming you want to print the titles of jobs categorized as 'Other'\n",
        "other_jobs = jobs_df[jobs_df['category'] == 'Other']\n",
        "print(other_jobs['title'])"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "WrJMfOxNy6WW",
        "outputId": "d8acf6c4-98f9-46af-a68f-8ae8f189cd66"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "5       Looking for Japanese people to read simple Eng...\n",
            "7            Disputes Recovery for eCommerce store in USA\n",
            "22                            Email deliverability expert\n",
            "30                 Google Ads Expert for eCommerce Agency\n",
            "35              Company Sourcing in Alto Paraná, Paraguay\n",
            "                              ...                        \n",
            "4642    [$250] Remove the redundant `+ New workspace` ...\n",
            "4665    Employment Reference and Background Check Spec...\n",
            "4671    Cold Caller Needed for Real Estate Investing G...\n",
            "4674                                       Ai development\n",
            "4675      Retype Handwritten document into Microsoft word\n",
            "Name: title, Length: 690, dtype: object\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# prompt: print all other titles\n",
        "\n",
        "# Assuming you want to print the titles of jobs categorized as 'Other'\n",
        "other_jobs = jobs_df[jobs_df['category'] == 'Other']\n",
        "print(other_jobs['title'])"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "zjAP8t6C5IC-",
        "outputId": "4a5903a0-c719-4830-9375-0b17646f622b"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "5       Looking for Japanese people to read simple Eng...\n",
            "7            Disputes Recovery for eCommerce store in USA\n",
            "22                            Email deliverability expert\n",
            "30                 Google Ads Expert for eCommerce Agency\n",
            "35              Company Sourcing in Alto Paraná, Paraguay\n",
            "                              ...                        \n",
            "4642    [$250] Remove the redundant `+ New workspace` ...\n",
            "4665    Employment Reference and Background Check Spec...\n",
            "4671    Cold Caller Needed for Real Estate Investing G...\n",
            "4674                                       Ai development\n",
            "4675      Retype Handwritten document into Microsoft word\n",
            "Name: title, Length: 690, dtype: object\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "other_jobs.to_csv(\"other.csv\",index=False)"
      ],
      "metadata": {
        "id": "CszngnJE7QZt"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# prompt: visuvalize the the jobs_df  to give more interative to my client\n",
        "\n",
        "import pandas as pd\n",
        "import plotly.express as px\n",
        "\n",
        "# Load the updated jobs data\n",
        "jobs_df = pd.read_csv('/content/category upwork jobs.csv')\n",
        "\n",
        "# Count the occurrences of each category\n",
        "category_counts = jobs_df['category'].value_counts()\n",
        "\n",
        "# Create an interactive bar plot using Plotly Express\n",
        "fig = px.bar(category_counts,\n",
        "             x=category_counts.index,\n",
        "             y=category_counts.values,\n",
        "             labels={'x': 'Job Category', 'y': 'Number of Jobs'},\n",
        "             title='Distribution of Jobs Across Categories',\n",
        "             text=category_counts.values) # Display counts on bars\n",
        "\n",
        "# Customize the plot for better readability\n",
        "fig.update_layout(xaxis_title=\"Job Category\",\n",
        "                  yaxis_title=\"Number of Jobs\",\n",
        "                  xaxis={'categoryorder':'total descending'},\n",
        "                  title={'x':0.5, 'xanchor':'center'},\n",
        "                  width=900, height=600)\n",
        "fig.update_traces(textposition='outside') # Position text outside bars\n",
        "\n",
        "fig.show()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 637
        },
        "id": "zak_foPX85fa",
        "outputId": "33c4c23c-dc68-4d27-9499-e6c6115e18e0"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "<html>\n",
              "<head><meta charset=\"utf-8\" /></head>\n",
              "<body>\n",
              "    <div>            <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script>                <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
              "        <script charset=\"utf-8\" src=\"https://cdn.plot.ly/plotly-2.35.2.min.js\"></script>                <div id=\"ed465556-1679-4eec-bb30-fcc3a002c92f\" class=\"plotly-graph-div\" style=\"height:600px; width:900px;\"></div>            <script type=\"text/javascript\">                                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"ed465556-1679-4eec-bb30-fcc3a002c92f\")) {                    Plotly.newPlot(                        \"ed465556-1679-4eec-bb30-fcc3a002c92f\",                        [{\"alignmentgroup\":\"True\",\"hovertemplate\":\"category=%{x}\\u003cbr\\u003eNumber of Jobs=%{y}\\u003cbr\\u003etext=%{text}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"\",\"marker\":{\"color\":\"#636efa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"\",\"offsetgroup\":\"\",\"orientation\":\"v\",\"showlegend\":false,\"text\":[861.0,690.0,429.0,355.0,341.0,254.0,220.0,212.0,201.0,187.0,133.0,118.0,105.0,77.0,75.0,73.0,46.0,44.0,43.0,26.0,25.0,21.0,20.0,19.0,17.0,16.0,14.0,12.0,10.0,7.0,7.0,6.0,5.0,5.0,2.0],\"textposition\":\"outside\",\"x\":[\"Web Development\",\"Other\",\"Design & Creative\",\"Social Media Management\",\"Project Management\",\"Administrative Support\",\"Mobile Development\",\"Video Production\",\"Data Science & Analytics\",\"Sales & Marketing\",\"Marketing\",\"UX\\u002fUI Design\",\"Legal\",\"Search Engine Optimization (SEO) & Digital Marketing\",\"Writing & Editing\",\"Art & Design\",\"Finance & Accounting\",\"Translation & Localization\",\"Construction\",\"IT & Technology\",\"Business Consulting\",\"Education\",\"Customer Service\",\"Finance\",\"Sports & Fitness\",\"Healthcare\",\"Fashion & Apparel\",\"Music\",\"Human Resources\",\"Logistics\",\"Network Engineering & Security\",\"Food & Beverage\",\"Travel\",\"Blockchain\",\"Nonprofit\"],\"xaxis\":\"x\",\"y\":[861,690,429,355,341,254,220,212,201,187,133,118,105,77,75,73,46,44,43,26,25,21,20,19,17,16,14,12,10,7,7,6,5,5,2],\"yaxis\":\"y\",\"type\":\"bar\"}],                        {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"Job Category\"},\"categoryorder\":\"total descending\"},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"Number of Jobs\"}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Distribution of Jobs Across Categories\",\"x\":0.5,\"xanchor\":\"center\"},\"barmode\":\"relative\",\"width\":900,\"height\":600},                        {\"responsive\": true}                    ).then(function(){\n",
              "                            \n",
              "var gd = document.getElementById('ed465556-1679-4eec-bb30-fcc3a002c92f');\n",
              "var x = new MutationObserver(function (mutations, observer) {{\n",
              "        var display = window.getComputedStyle(gd).display;\n",
              "        if (!display || display === 'none') {{\n",
              "            console.log([gd, 'removed!']);\n",
              "            Plotly.purge(gd);\n",
              "            observer.disconnect();\n",
              "        }}\n",
              "}});\n",
              "\n",
              "// Listen for the removal of the full notebook cells\n",
              "var notebookContainer = gd.closest('#notebook-container');\n",
              "if (notebookContainer) {{\n",
              "    x.observe(notebookContainer, {childList: true});\n",
              "}}\n",
              "\n",
              "// Listen for the clearing of the current output cell\n",
              "var outputEl = gd.closest('.output');\n",
              "if (outputEl) {{\n",
              "    x.observe(outputEl, {childList: true});\n",
              "}}\n",
              "\n",
              "                        })                };                            </script>        </div>\n",
              "</body>\n",
              "</html>"
            ]
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# prompt: create a desh board for /content/category upwork jobs.csv  file\n",
        "\n",
        "import pandas as pd\n",
        "import plotly.express as px\n",
        "\n",
        "# Load the updated jobs data\n",
        "jobs_df = pd.read_csv('/content/category upwork jobs.csv')\n",
        "\n",
        "# Count the occurrences of each category\n",
        "category_counts = jobs_df['category'].value_counts()\n",
        "\n",
        "# Create an interactive bar plot using Plotly Express\n",
        "fig = px.bar(category_counts,\n",
        "             x=category_counts.index,\n",
        "             y=category_counts.values,\n",
        "             labels={'x': 'Job Category', 'y': 'Number of Jobs'},\n",
        "             title='Distribution of Jobs Across Categories',\n",
        "             text=category_counts.values) # Display counts on bars\n",
        "\n",
        "# Customize the plot for better readability\n",
        "fig.update_layout(xaxis_title=\"Job Category\",\n",
        "                  yaxis_title=\"Number of Jobs\",\n",
        "                  xaxis={'categoryorder':'total descending'},\n",
        "                  title={'x':0.5, 'xanchor':'center'},\n",
        "                  width=900, height=600)\n",
        "fig.update_traces(textposition='outside') # Position text outside bars\n",
        "\n",
        "fig.show()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 637
        },
        "id": "wcCybOBm_x1b",
        "outputId": "0bb6ecde-87b8-45c5-cb67-177b44f608ca"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "<html>\n",
              "<head><meta charset=\"utf-8\" /></head>\n",
              "<body>\n",
              "    <div>            <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script>                <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
              "        <script charset=\"utf-8\" src=\"https://cdn.plot.ly/plotly-2.35.2.min.js\"></script>                <div id=\"382f8fb7-3eae-43a4-9f99-72ccfe49ba5b\" class=\"plotly-graph-div\" style=\"height:600px; width:900px;\"></div>            <script type=\"text/javascript\">                                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById(\"382f8fb7-3eae-43a4-9f99-72ccfe49ba5b\")) {                    Plotly.newPlot(                        \"382f8fb7-3eae-43a4-9f99-72ccfe49ba5b\",                        [{\"alignmentgroup\":\"True\",\"hovertemplate\":\"category=%{x}\\u003cbr\\u003eNumber of Jobs=%{y}\\u003cbr\\u003etext=%{text}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"\",\"marker\":{\"color\":\"#636efa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"\",\"offsetgroup\":\"\",\"orientation\":\"v\",\"showlegend\":false,\"text\":[861.0,690.0,429.0,355.0,341.0,254.0,220.0,212.0,201.0,187.0,133.0,118.0,105.0,77.0,75.0,73.0,46.0,44.0,43.0,26.0,25.0,21.0,20.0,19.0,17.0,16.0,14.0,12.0,10.0,7.0,7.0,6.0,5.0,5.0,2.0],\"textposition\":\"outside\",\"x\":[\"Web Development\",\"Other\",\"Design & Creative\",\"Social Media Management\",\"Project Management\",\"Administrative Support\",\"Mobile Development\",\"Video Production\",\"Data Science & Analytics\",\"Sales & Marketing\",\"Marketing\",\"UX\\u002fUI Design\",\"Legal\",\"Search Engine Optimization (SEO) & Digital Marketing\",\"Writing & Editing\",\"Art & Design\",\"Finance & Accounting\",\"Translation & Localization\",\"Construction\",\"IT & Technology\",\"Business Consulting\",\"Education\",\"Customer Service\",\"Finance\",\"Sports & Fitness\",\"Healthcare\",\"Fashion & Apparel\",\"Music\",\"Human Resources\",\"Logistics\",\"Network Engineering & Security\",\"Food & Beverage\",\"Travel\",\"Blockchain\",\"Nonprofit\"],\"xaxis\":\"x\",\"y\":[861,690,429,355,341,254,220,212,201,187,133,118,105,77,75,73,46,44,43,26,25,21,20,19,17,16,14,12,10,7,7,6,5,5,2],\"yaxis\":\"y\",\"type\":\"bar\"}],                        {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"Job Category\"},\"categoryorder\":\"total descending\"},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"Number of Jobs\"}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Distribution of Jobs Across Categories\",\"x\":0.5,\"xanchor\":\"center\"},\"barmode\":\"relative\",\"width\":900,\"height\":600},                        {\"responsive\": true}                    ).then(function(){\n",
              "                            \n",
              "var gd = document.getElementById('382f8fb7-3eae-43a4-9f99-72ccfe49ba5b');\n",
              "var x = new MutationObserver(function (mutations, observer) {{\n",
              "        var display = window.getComputedStyle(gd).display;\n",
              "        if (!display || display === 'none') {{\n",
              "            console.log([gd, 'removed!']);\n",
              "            Plotly.purge(gd);\n",
              "            observer.disconnect();\n",
              "        }}\n",
              "}});\n",
              "\n",
              "// Listen for the removal of the full notebook cells\n",
              "var notebookContainer = gd.closest('#notebook-container');\n",
              "if (notebookContainer) {{\n",
              "    x.observe(notebookContainer, {childList: true});\n",
              "}}\n",
              "\n",
              "// Listen for the clearing of the current output cell\n",
              "var outputEl = gd.closest('.output');\n",
              "if (outputEl) {{\n",
              "    x.observe(outputEl, {childList: true});\n",
              "}}\n",
              "\n",
              "                        })                };                            </script>        </div>\n",
              "</body>\n",
              "</html>"
            ]
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "EidrGj0KChq-"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}