File size: 8,226 Bytes
4ddf4f2
217f0f3
4ddf4f2
12fc0e4
4ddf4f2
3cf52c1
4ddf4f2
 
 
 
 
1378b3b
 
4ddf4f2
1378b3b
 
c3c81f6
 
 
c768bce
3cf52c1
 
 
c768bce
 
3cf52c1
4ddf4f2
 
 
22b0671
12fc0e4
14a964e
c3c81f6
 
 
 
00607ed
039a3ce
65a487f
4ddf4f2
c768bce
1378b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c81f6
1378b3b
4dd02a3
1378b3b
 
12fc0e4
4ddf4f2
 
14a964e
 
4ddf4f2
039a3ce
4ddf4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12fc0e4
4ddf4f2
 
 
 
 
3cf52c1
 
4ddf4f2
3cf52c1
 
 
 
 
 
 
 
4ddf4f2
 
 
 
12fc0e4
65a487f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddf4f2
 
3cf52c1
 
 
 
 
 
 
 
4ddf4f2
 
 
 
 
55ddb0c
4ddf4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7845a86
4ddf4f2
 
 
12fc0e4
4ddf4f2
12fc0e4
4ddf4f2
12fc0e4
4ddf4f2
 
3cf52c1
 
12fc0e4
1ba3b01
 
 
12fc0e4
1dd0a3a
12fc0e4
3cf52c1
 
 
 
 
 
 
4ddf4f2
 
 
 
12c72db
ab372d4
a09e5f2
 
 
4ddf4f2
d353726
ab372d4
c768bce
 
 
932bf9e
ab372d4
 
 
 
204de46
4ddf4f2
 
 
 
 
 
 
217f0f3
3cf52c1
217f0f3
 
449f456
3cf52c1
12fc0e4
 
1c8ab2e
 
 
3cf52c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
from gtts import gTTS
import time
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import uuid  # for generating unique IDs
import datetime
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
import json
import re
from deep_translator import GoogleTranslator
from dotenv import load_dotenv
import random
import string


load_dotenv()
# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
    message: str
    language: str

repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
    model=repo_id,
    token=os.getenv("HF_TOKEN"),
)

os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")

app = FastAPI()

@app.middleware("http")
async def add_security_headers(request: Request, call_next):
    response = await call_next(request)
    response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
    response.headers["X-Frame-Options"] = "ALLOWALL"
    return response

# Allow CORS requests from any domain
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/favicon.ico")
async def favicon():
    return HTMLResponse("")  # or serve a real favicon if you have one

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="static")

# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []

def data_ingestion_from_directory():
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)
def generate_unique_filename(extension="txt"):
    # Current timestamp

    timestamp = time.strftime("%Y%m%d%H%M%S")
    
    # Generate a random string of 6 characters
    random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=6))
    
    # Combine timestamp and random string
    unique_filename = f"{timestamp}_{random_str}.{extension}"
    return unique_filename
def initialize():
    start_time = time.time()
    data_ingestion_from_directory()  # Process PDF ingestion at startup
    print(f"Data ingestion time: {time.time() - start_time} seconds")

def split_name(full_name):
    # Split the name by spaces
    words = full_name.strip().split()
    
    # Logic for determining first name and last name
    if len(words) == 1:
        first_name = ''
        last_name = words[0]
    elif len(words) == 2:
        first_name = words[0]
        last_name = words[1]
    else:
        first_name = words[0]
        last_name = ' '.join(words[1:])
    
    return first_name, last_name

initialize()  # Run initialization tasks
#You are the ITC GrandChola Hotel voice chatbot and your name is  hotel helper.
#  Your goal is to provide accurate, professional, and helpful answers to user queries
#  based on the Taj hotel data. Always ensure your responses are clear and concise. 
# Give response within 10-15 words only. If you don't know the answer,
#  you can say 'I don't know'. If you need more information, you can ask the user for clarification.
#  You can also ask the user if they need help with anything else. Remember to be polite and professional at all times. If you are ready to start, you can say 'I am ready'. If you need to take a break, you can say 'I need a break'.
#  If you need to end the conversation, you can say 'Goodbye'.
            
def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user. 
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    print(query)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."
    current_chat_history.append((query, response))
    return response
def generate_unique_audio_filename():
    return f"audio/response_{uuid.uuid4().hex}.mp3"
@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
    return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
@app.get("/voice/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
    return templates.TemplateResponse("voice.html", {"request": request, "user_id": id})

@app.get("/audio/{filename}")
async def get_audio(filename: str):
    audio_path = os.path.join(os.getcwd(), filename)  # Ensure correct file path
    if os.path.exists(audio_path):
        return FileResponse(audio_path)
    else:
        raise HTTPException(status_code=404, detail="Audio file not found.")

@app.post("/chat/")
async def chat(request: MessageRequest):
    message = request.message  # Access the message from the request body
    language = request.language
    language_code = request.language.split('-')[0]
    translator1 = GoogleTranslator(source='auto', target='en')
# Translation
    message = translator1.translate(message)
    response = handle_query(message)  # Process the message
    response1 = response
    try:
        translator = GoogleTranslator(source='en', target=language_code)  # Translate to Tamil
        response1 = translator.translate(response)
        #response1 = translator.translate(response, dest=language_code).text
        print(response1)
    except Exception as e:
        # Handle translation errors
        print(f"Translation error: {e}")
        translated_response = "Sorry, I couldn't translate the response."
    print(f"Selected Language: {language}")
    message_data = {
        "sender": "User",
        "message": message,
        "response": response,
        "timestamp": datetime.datetime.now().isoformat()
    }
    chat_history.append(message_data)
    tts = gTTS(text=response1, lang=language_code)
    audio_path = generate_unique_filename("mp3")
    tts.save(audio_path)
    return {"response": response1,
           "audioUrl": f"audio/{audio_path}"}


@app.get("/")
def read_root(request: Request):
    return templates.TemplateResponse("home.html", {"request": request})