Spaces:
Running
Running
File size: 7,323 Bytes
6079c6e d2c3421 b35805b 9a97411 6079c6e 9a97411 6079c6e 9a97411 8cd3c65 9a97411 6079c6e 9a97411 29cb53e 9a97411 6079c6e 9a97411 35446dd 9a97411 6079c6e 9a97411 b78d721 f804d88 9a97411 ae66ad0 9a97411 8cd3c65 9a97411 8cd3c65 9a97411 8cd3c65 9a97411 8cd3c65 9a97411 8cd3c65 f804d88 9a97411 f804d88 9a97411 f804d88 9a97411 b35805b 9a97411 d2c3421 f804d88 d2c3421 9a97411 d2c3421 f804d88 d2c3421 9a97411 d2c3421 6079c6e 9a97411 f804d88 9a97411 f804d88 35446dd f804d88 8cd3c65 9a97411 8cd3c65 9a97411 8cd3c65 9a97411 8cd3c65 9a97411 8cd3c65 f804d88 9a97411 29cb53e f804d88 9a97411 8cd3c65 f804d88 9a97411 f804d88 9a97411 29cb53e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">A.I. Healthcare</h1>
</div>
'''
LICENSE = """
<p>
This Health Assistant is designed to provide helpful healthcare information; however, it may make mistakes and is not designed to replace professional medical care. It is not intended to diagnose any condition or disease. Always consult with a qualified healthcare provider for any medical concerns.
</p>
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">A.I. Healthcare</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
model = AutoModelForCausalLM.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=60)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int,
confirm: bool) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
confirm (bool): Whether the user has confirmed the age/disclaimer.
Returns:
str: The generated response.
"""
# If the confirmation checkbox is not checked, return a short message immediately.
if not confirm:
return "⚠️ You must confirm that you meet the usage requirements before sending a message."
conversation = []
for user, assistant in history:
conversation.extend([
{"role": "user", "content": user},
{"role": "assistant", "content": assistant}
])
# Ensure the model starts with "<think>"
conversation.append({"role": "user", "content": message})
conversation.append({"role": "assistant", "content": "<think> "}) # Force <think> at start
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
buffer = ""
think_detected = False
thinking_message_sent = False
full_response = "" # Store the full assistant response
for text in streamer:
buffer += text
full_response += text # Store raw assistant response (includes <think>)
# Send the "thinking" message once text starts generating
if not thinking_message_sent:
thinking_message_sent = True
yield "A.I. Healthcare is Thinking...\n\n"
# Wait until </think> is detected before streaming output
if not think_detected:
if "</think>" in buffer:
think_detected = True
buffer = buffer.split("</think>", 1)[1] # Remove <think> section
else:
outputs.append(text)
yield "".join(outputs)
# Store the full response (including <think>) in history for context
history.append((message, full_response))
# Custom JavaScript to disable the send button until confirmation is given.
# (The JS waits for the checkbox with a label containing the specified text and then monitors its state.)
CUSTOM_JS = """
<script>
document.addEventListener("DOMContentLoaded", function() {
// Poll for the confirmation checkbox and the send button inside the ChatInterface.
const interval = setInterval(() => {
// The checkbox is rendered as an <input type="checkbox"> with an associated label.
const checkbox = document.querySelector('input[type="checkbox"][aria-label*="I hereby confirm that I am at least 18 years of age"]');
// The send button might be a <button> element with a title or specific text. Adjust the selector as needed.
const sendButton = document.querySelector('button[title="Send"]');
if (checkbox && sendButton) {
sendButton.disabled = !checkbox.checked;
checkbox.addEventListener('change', function() {
sendButton.disabled = !checkbox.checked;
});
clearInterval(interval);
}
}, 500);
});
</script>
"""
with gr.Blocks(css=css, title="A.I. Healthcare") as demo:
gr.Markdown(DESCRIPTION)
# Inject the custom JavaScript.
gr.HTML(CUSTOM_JS)
# The ChatInterface below now includes additional inputs: the confirmation checkbox and the parameter sliders.
chat_interface = gr.ChatInterface(
fn=chat_llama3_8b,
title="A.I. Healthcare Chat",
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Conversation'),
additional_inputs=[
gr.Checkbox(
value=False,
label=("I hereby confirm that I am at least 18 years of age (or accompanied by a legal guardian "
"who is at least 18 years old), understand that the information provided by this service "
"is for informational purposes only and is not intended to diagnose or treat any medical condition, "
"and acknowledge that I am solely responsible for verifying any information provided."),
elem_id="age_confirm_checkbox"
),
gr.Slider(minimum=0.6, maximum=0.6, step=0.1, value=0.6, label="Temperature", visible=False),
gr.Slider(minimum=128, maximum=4096, step=64, value=1024, label="Max new tokens", visible=False),
],
examples=[
['What are the common symptoms of diabetes?'],
['How can I manage high blood pressure with lifestyle changes?'],
['What nutritional advice can help improve heart health?'],
['Can you explain the benefits of regular exercise for mental well-being?'],
['What should I know about the side effects of common medications?']
],
cache_examples=False,
allow_screenshot=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
|