File size: 4,919 Bytes
6079c6e
d2c3421
b35805b
9a97411
 
6079c6e
9a97411
 
6079c6e
9a97411
 
c7c3eb0
9a97411
 
6079c6e
9a97411
 
b35805b
9a97411
 
6079c6e
9a97411
 
e17b5cc
9a97411
 
 
6079c6e
9a97411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c3eb0
f804d88
 
9a97411
 
 
 
 
b2f2185
9a97411
f804d88
 
 
 
9a97411
 
 
 
 
 
 
 
 
 
f804d88
9a97411
 
f804d88
 
 
 
 
 
9a97411
f804d88
9a97411
 
b35805b
9a97411
 
d2c3421
f804d88
d2c3421
9a97411
d2c3421
 
 
 
f804d88
d2c3421
 
9a97411
d2c3421
 
6079c6e
9a97411
f804d88
 
 
 
 
9a97411
f804d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a97411
 
f804d88
9a97411
 
 
 
 
 
 
 
 
 
f804d88
 
 
9a97411
 
 
 
 
 
f804d88
9a97411
f804d88
9a97411
 
f804d88
9a97411
f804d88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">DeepSeek-R1-Zero</h1>
</div>
'''

LICENSE = """
<p/>

---
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepSeek R1</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("reedmayhew/DeepSeek-R1-Refined-Llama-3.1-8B-hf")
model = AutoModelForCausalLM.from_pretrained("reedmayhew/DeepSeek-R1-Refined-Llama-3.1-8B-hf", device_map="auto")

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU(duration=30)
def chat_llama3_8b(message: str, 
                    history: list, 
                    temperature: float, 
                    max_new_tokens: int
                   ) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    
    conversation = []
    for user, assistant in history:
        conversation.extend([
            {"role": "user", "content": user}, 
            {"role": "assistant", "content": assistant}
        ])
    
    # Ensure the model starts with "<think>"
    conversation.append({"role": "user", "content": message})
    conversation.append({"role": "assistant", "content": "<think> "})  # Force <think> at start

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    buffer = ""
    think_detected = False
    thinking_message_sent = False
    full_response = ""  # Store the full assistant response

    for text in streamer:
        buffer += text
        full_response += text  # Store raw assistant response (includes <think>)

        # Send the "thinking" message once text starts generating
        if not thinking_message_sent:
            thinking_message_sent = True
            yield "DeepSeek R1 is Thinking...\n\n"

        # Wait until </think> is detected before streaming output
        if not think_detected:
            if "</think>" in buffer:
                think_detected = True
                buffer = buffer.split("</think>", 1)[1]  # Remove <think> section
        else:
            outputs.append(text)
            yield "".join(outputs)

    # Store the full response (including <think>) in history, but only show the user the cleaned response
    history.append((message, full_response))  # Full assistant response saved for context

# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0.6, maximum=0.6, step=0.1, value=0.6, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=4096, step=64, value=1024, label="Max new tokens", render=False),
        ],
        examples=[
            ['How to setup a human base on Mars? Give short answer.'],
            ['Explain theory of relativity to me like I’m 8 years old.'],
            ['What is 9,000 * 9,000?'],
            ['Write a pun-filled happy birthday message to my friend Alex.'],
            ['Justify why a penguin might make a good king of the jungle.']
        ],
        cache_examples=False,
    )
    
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.launch()