HealthAssistant / app.py
reedmayhew's picture
Update app.py
8e4dae2 verified
raw
history blame
6.26 kB
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">A.I. Healthcare</h1>
</div>
'''
LICENSE = """
<p>
This Health Assistant is designed to provide helpful healthcare information; however, it may make mistakes and is not designed to replace professional medical care. It is not intended to diagnose any condition or disease. Always consult with a qualified healthcare provider for any medical concerns.
</p>
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">A.I. Healthcare</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model with the updated model name
tokenizer = AutoTokenizer.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
model = AutoModelForCausalLM.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=60)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int,
confirm: bool) -> str:
"""
Generate a streaming response using the Healthcare-Reasoning-Assistant-Llama-3.1-8B-HF model.
Args:
message (str): The input message.
history (list): The conversation history.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
confirm (bool): Whether the user has confirmed the usage disclaimer.
Yields:
str: The generated response, streamed token-by-token.
"""
# Ensure the user has confirmed the disclaimer
if not confirm:
return "⚠️ You must confirm that you meet the usage requirements before sending a message."
# Prepare the conversation history for the model input
conversation = []
for user, assistant in history:
conversation.extend([
{"role": "user", "content": user},
{"role": "assistant", "content": assistant}
])
# Append the current user message
conversation.append({"role": "user", "content": message})
# Convert the conversation into input ids using the chat template
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
# Set up the streamer to stream text output
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
# Launch the generation in a separate thread
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
full_response = ""
# Simply stream each token as it comes from the model
for text in streamer:
full_response += text
yield text
# Save the full response (for context in the conversation history)
history.append((message, full_response))
# Custom JavaScript to disable the send button until confirmation is given.
CUSTOM_JS = """
<script>
document.addEventListener("DOMContentLoaded", function() {
const interval = setInterval(() => {
const checkbox = document.querySelector('input[type="checkbox"][aria-label*="I hereby confirm that I am at least 18 years of age"]');
const sendButton = document.querySelector('button[title="Send"]');
if (checkbox && sendButton) {
sendButton.disabled = !checkbox.checked;
checkbox.addEventListener('change', function() {
sendButton.disabled = !checkbox.checked;
});
clearInterval(interval);
}
}, 500);
});
</script>
"""
with gr.Blocks(css=css, title="A.I. Healthcare") as demo:
gr.Markdown(DESCRIPTION)
gr.HTML(CUSTOM_JS)
chat_interface = gr.ChatInterface(
fn=chat_llama3_8b,
title="A.I. Healthcare Chat",
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Conversation'),
additional_inputs=[
gr.Checkbox(
value=False,
label=("I hereby confirm that I am at least 18 years of age (or accompanied by a legal guardian "
"who is at least 18 years old), understand that the information provided by this service "
"is for informational purposes only and is not intended to diagnose or treat any medical condition, "
"and acknowledge that I am solely responsible for verifying any information provided."),
elem_id="age_confirm_checkbox"
),
gr.Slider(minimum=0.6, maximum=0.6, step=0.1, value=0.6, label="Temperature", visible=False),
gr.Slider(minimum=128, maximum=4096, step=64, value=1024, label="Max new tokens", visible=False),
],
examples=[
['What are the common symptoms of diabetes?'],
['How can I manage high blood pressure with lifestyle changes?'],
['What nutritional advice can help improve heart health?'],
['Can you explain the benefits of regular exercise for mental well-being?'],
['What should I know about the side effects of common medications?']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()