Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
9 |
|
10 |
DESCRIPTION = '''
|
11 |
<div>
|
12 |
-
|
13 |
</div>
|
14 |
'''
|
15 |
|
@@ -40,7 +40,7 @@ h1 {
|
|
40 |
}
|
41 |
"""
|
42 |
|
43 |
-
# Load the tokenizer and model
|
44 |
tokenizer = AutoTokenizer.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
|
45 |
model = AutoModelForCausalLM.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
|
46 |
|
@@ -51,28 +51,21 @@ terminators = [
|
|
51 |
|
52 |
@spaces.GPU(duration=60)
|
53 |
def chat_llama3_8b(message: str,
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
"""
|
59 |
-
Generate a streaming response using the
|
60 |
-
|
61 |
Args:
|
62 |
message (str): The input message.
|
63 |
-
history (list): The conversation history.
|
64 |
temperature (float): The temperature for generating the response.
|
65 |
max_new_tokens (int): The maximum number of new tokens to generate.
|
66 |
-
|
67 |
-
|
68 |
-
Yields:
|
69 |
-
str: The generated response, streamed token-by-token.
|
70 |
"""
|
71 |
-
# Ensure the user has confirmed the disclaimer
|
72 |
-
if not confirm:
|
73 |
-
return "⚠️ You must confirm that you meet the usage requirements before sending a message."
|
74 |
|
75 |
-
# Prepare the conversation history for the model input
|
76 |
conversation = []
|
77 |
for user, assistant in history:
|
78 |
conversation.extend([
|
@@ -80,15 +73,14 @@ def chat_llama3_8b(message: str,
|
|
80 |
{"role": "assistant", "content": assistant}
|
81 |
])
|
82 |
|
83 |
-
#
|
84 |
conversation.append({"role": "user", "content": message})
|
85 |
-
|
86 |
-
|
87 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
88 |
|
89 |
-
# Set up the streamer to stream text output
|
90 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
91 |
-
|
92 |
generate_kwargs = dict(
|
93 |
input_ids=input_ids,
|
94 |
streamer=streamer,
|
@@ -101,57 +93,50 @@ def chat_llama3_8b(message: str,
|
|
101 |
if temperature == 0:
|
102 |
generate_kwargs['do_sample'] = False
|
103 |
|
104 |
-
# Launch the generation in a separate thread
|
105 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
106 |
t.start()
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
for text in streamer:
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
# Save the full response (for context in the conversation history)
|
115 |
-
history.append((message, full_response))
|
116 |
-
|
117 |
-
# Custom JavaScript to disable the send button until confirmation is given.
|
118 |
-
CUSTOM_JS = """
|
119 |
-
<script>
|
120 |
-
document.addEventListener("DOMContentLoaded", function() {
|
121 |
-
const interval = setInterval(() => {
|
122 |
-
const checkbox = document.querySelector('input[type="checkbox"][aria-label*="I hereby confirm that I am at least 18 years of age"]');
|
123 |
-
const sendButton = document.querySelector('button[title="Send"]');
|
124 |
-
if (checkbox && sendButton) {
|
125 |
-
sendButton.disabled = !checkbox.checked;
|
126 |
-
checkbox.addEventListener('change', function() {
|
127 |
-
sendButton.disabled = !checkbox.checked;
|
128 |
-
});
|
129 |
-
clearInterval(interval);
|
130 |
-
}
|
131 |
-
}, 500);
|
132 |
-
});
|
133 |
-
</script>
|
134 |
-
"""
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
|
|
141 |
fn=chat_llama3_8b,
|
142 |
-
|
143 |
-
|
|
|
144 |
additional_inputs=[
|
145 |
-
gr.
|
146 |
-
|
147 |
-
label=("I hereby confirm that I am at least 18 years of age (or accompanied by a legal guardian "
|
148 |
-
"who is at least 18 years old), understand that the information provided by this service "
|
149 |
-
"is for informational purposes only and is not intended to diagnose or treat any medical condition, "
|
150 |
-
"and acknowledge that I am solely responsible for verifying any information provided."),
|
151 |
-
elem_id="age_confirm_checkbox"
|
152 |
-
),
|
153 |
-
gr.Slider(minimum=0.6, maximum=0.6, step=0.1, value=0.6, label="Temperature", visible=False),
|
154 |
-
gr.Slider(minimum=128, maximum=4096, step=64, value=1024, label="Max new tokens", visible=False),
|
155 |
],
|
156 |
examples=[
|
157 |
['What are the common symptoms of diabetes?'],
|
@@ -166,4 +151,4 @@ with gr.Blocks(css=css, title="A.I. Healthcare") as demo:
|
|
166 |
gr.Markdown(LICENSE)
|
167 |
|
168 |
if __name__ == "__main__":
|
169 |
-
demo.launch()
|
|
|
9 |
|
10 |
DESCRIPTION = '''
|
11 |
<div>
|
12 |
+
<h1 style="text-align: center;">A.I. Healthcare</h1>
|
13 |
</div>
|
14 |
'''
|
15 |
|
|
|
40 |
}
|
41 |
"""
|
42 |
|
43 |
+
# Load the tokenizer and model
|
44 |
tokenizer = AutoTokenizer.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
|
45 |
model = AutoModelForCausalLM.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
|
46 |
|
|
|
51 |
|
52 |
@spaces.GPU(duration=60)
|
53 |
def chat_llama3_8b(message: str,
|
54 |
+
history: list,
|
55 |
+
temperature: float,
|
56 |
+
max_new_tokens: int
|
57 |
+
) -> str:
|
58 |
"""
|
59 |
+
Generate a streaming response using the llama3-8b model.
|
|
|
60 |
Args:
|
61 |
message (str): The input message.
|
62 |
+
history (list): The conversation history used by ChatInterface.
|
63 |
temperature (float): The temperature for generating the response.
|
64 |
max_new_tokens (int): The maximum number of new tokens to generate.
|
65 |
+
Returns:
|
66 |
+
str: The generated response.
|
|
|
|
|
67 |
"""
|
|
|
|
|
|
|
68 |
|
|
|
69 |
conversation = []
|
70 |
for user, assistant in history:
|
71 |
conversation.extend([
|
|
|
73 |
{"role": "assistant", "content": assistant}
|
74 |
])
|
75 |
|
76 |
+
# Ensure the model starts with "<think>"
|
77 |
conversation.append({"role": "user", "content": message})
|
78 |
+
conversation.append({"role": "assistant", "content": "<think> "}) # Force <think> at start
|
79 |
+
|
80 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
81 |
|
|
|
82 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
83 |
+
|
84 |
generate_kwargs = dict(
|
85 |
input_ids=input_ids,
|
86 |
streamer=streamer,
|
|
|
93 |
if temperature == 0:
|
94 |
generate_kwargs['do_sample'] = False
|
95 |
|
|
|
96 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
97 |
t.start()
|
98 |
+
|
99 |
+
outputs = []
|
100 |
+
buffer = ""
|
101 |
+
think_detected = False
|
102 |
+
thinking_message_sent = False
|
103 |
+
full_response = "" # Store the full assistant response
|
104 |
+
|
105 |
for text in streamer:
|
106 |
+
buffer += text
|
107 |
+
full_response += text # Store raw assistant response (includes <think>)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# Send the "thinking" message once text starts generating
|
110 |
+
if not thinking_message_sent:
|
111 |
+
thinking_message_sent = True
|
112 |
+
yield "A.I. Healthcare is Thinking...\n\n"
|
113 |
+
|
114 |
+
# Wait until </think> is detected before streaming output
|
115 |
+
if not think_detected:
|
116 |
+
if "</think>" in buffer:
|
117 |
+
think_detected = True
|
118 |
+
buffer = buffer.split("</think>", 1)[1] # Remove <think> section
|
119 |
+
else:
|
120 |
+
outputs.append(text)
|
121 |
+
yield "".join(outputs)
|
122 |
+
|
123 |
+
# Store the full response (including <think>) in history, but only show the user the cleaned response
|
124 |
+
history.append((message, full_response)) # Full assistant response saved for context
|
125 |
+
|
126 |
+
# Gradio block
|
127 |
+
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
128 |
+
|
129 |
+
with gr.Blocks(fill_height=True, css=css) as demo:
|
130 |
|
131 |
+
gr.Markdown(DESCRIPTION)
|
132 |
+
gr.ChatInterface(
|
133 |
fn=chat_llama3_8b,
|
134 |
+
chatbot=chatbot,
|
135 |
+
fill_height=True,
|
136 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
137 |
additional_inputs=[
|
138 |
+
gr.Slider(minimum=0.6, maximum=0.6, step=0.1, value=0.6, label="Temperature", render=False),
|
139 |
+
gr.Slider(minimum=128, maximum=4096, step=64, value=1024, label="Max new tokens", render=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
],
|
141 |
examples=[
|
142 |
['What are the common symptoms of diabetes?'],
|
|
|
151 |
gr.Markdown(LICENSE)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
+
demo.launch()
|