import gradio as gr import os import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) DESCRIPTION = '''

A.I. Healthcare

''' LICENSE = """

This Health Assistant is designed to provide helpful healthcare information; however, it may make mistakes and is not designed to replace professional medical care. It is not intended to diagnose any condition or disease. Always consult with a qualified healthcare provider for any medical concerns.

""" PLACEHOLDER = """

A.I. Healthcare

Ask me anything...

""" css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("reedmayhew/DeepSeek-R1-Refined-Llama-3.1-8B-hf", device_map="cuda") model = AutoModelForCausalLM.from_pretrained("reedmayhew/DeepSeek-R1-Refined-Llama-3.1-8B-hf", device_map="cuda") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU(duration=60) def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] for user, assistant in history: conversation.extend([ {"role": "user", "content": user}, {"role": "assistant", "content": assistant} ]) # Ensure the model starts with "" conversation.append({"role": "user", "content": message}) conversation.append({"role": "assistant", "content": " "}) # Force at start input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] buffer = "" think_detected = False thinking_message_sent = False full_response = "" # Store the full assistant response for text in streamer: buffer += text full_response += text # Store raw assistant response (includes ) # Send the "thinking" message once text starts generating if not thinking_message_sent: thinking_message_sent = True yield "A.I. Healthcare is Thinking...\n\n" # Wait until is detected before streaming output if not think_detected: if "" in buffer: think_detected = True buffer = buffer.split("", 1)[1] # Remove section else: outputs.append(text) yield "".join(outputs) # Store the full response (including ) in history, but only show the user the cleaned response history.append((message, full_response)) # Full assistant response saved for context # Gradio block chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0.6, maximum=0.6, step=0.1, value=0.6, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=64, value=1024, label="Max new tokens", render=False), ], examples=[ ['What are the common symptoms of diabetes?'], ['How can I manage high blood pressure with lifestyle changes?'], ['What nutritional advice can help improve heart health?'], ['Can you explain the benefits of regular exercise for mental well-being?'], ['What should I know about the side effects of common medications?'] ], cache_examples=False, ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()