File size: 6,715 Bytes
63c9177 0588a72 3ad05c5 d0d60f4 0588a72 079c63d 616220d 5ad9b18 616220d 5ad9b18 0588a72 0e06728 0588a72 de624eb 0588a72 3ad05c5 0588a72 3ad05c5 5ad9b18 616220d 5ad9b18 0588a72 616220d 5ad9b18 616220d 5ad9b18 616220d 5ad9b18 616220d 995a0e5 079c63d 0588a72 079c63d d0d60f4 079c63d 3ad05c5 41f2589 d0d60f4 41f2589 0b81ef5 d0d60f4 5ad9b18 d0d60f4 0588a72 616220d 0588a72 3ad05c5 aa05415 616220d 0588a72 5ad9b18 d0d60f4 5ad9b18 aa05415 5ad9b18 aa05415 5ad9b18 0588a72 616220d 0588a72 616220d 3ad05c5 5ad9b18 d0d60f4 5ad9b18 3ad05c5 5ad9b18 3ad05c5 5ad9b18 3ad05c5 5ad9b18 3ad05c5 0588a72 5ad9b18 0588a72 d0d60f4 0588a72 616220d 0588a72 d0d60f4 3ad05c5 0588a72 2a08ae8 69f09c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
import requests
import re
import os
API_ENDPOINT = os.getenv("API_ENDPOINT", "none")
API_TOKEN = os.getenv("API_TOKEN")
def get_ai_response(message, history):
"""Fetch AI response from the API using the modern messages format."""
messages = [{"role": "system", "content": "You are a helpful assistant."}]
# Build the API history using all prior complete pairs
for user_msg, ai_msg in history:
if ai_msg != "⏳ Thinking...":
clean_ai_msg = re.sub(r'<details>.*?</details>', '', ai_msg, flags=re.DOTALL)
clean_ai_msg = re.sub(r'<[^>]*>', '', clean_ai_msg)
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": clean_ai_msg})
# Append the new user message for which we want a response
messages.append({"role": "user", "content": message})
payload = {
"model": "NousResearch/DeepHermes-3-Llama-3-8B-Preview",
"messages": messages,
"stream": False,
"max_tokens": 10000,
"temperature": 0.7
}
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}
try:
response = requests.post(API_ENDPOINT, headers=headers, json=payload)
response.raise_for_status()
raw_response = response.json()["choices"][0]["message"]["content"]
html_response = convert_reasoning_to_collapsible(raw_response)
return html_response
except Exception as e:
return f"Error: {str(e)}"
def convert_reasoning_to_collapsible(text):
"""Convert reasoning tags to collapsible HTML sections."""
reasoning_pattern = re.compile(r'<reasoning>(.*?)</reasoning>', re.DOTALL)
def replace_with_collapsible(match):
reasoning_content = match.group(1).strip()
return f'<details><summary><strong>See reasoning</strong></summary><div class="reasoning-content">{reasoning_content}</div></details>'
html_response = reasoning_pattern.sub(replace_with_collapsible, text)
html_response = re.sub(r'<sep>.*?</sep>', '', html_response, flags=re.DOTALL)
html_response = html_response.replace('<sep>', '').replace('</sep>', '')
return html_response
def add_user_message(message, history):
"""Immediately add the user's message with a '⏳ Thinking...' assistant reply."""
if history is None:
history = []
history.append((message, "⏳ Thinking..."))
# Return both updated state and chatbot messages
return history, history
def generate_response_from_history(history):
"""Generate the assistant's reply and update the last pending message."""
if not history:
return history, history
# Get the last user message (which is paired with "⏳ Thinking...")
last_user_message = history[-1][0]
# Build API history excluding pending messages
api_history = []
for user_msg, ai_msg in history:
if ai_msg != "⏳ Thinking...":
clean_ai_msg = re.sub(r'<details>.*?</details>', '', ai_msg, flags=re.DOTALL)
clean_ai_msg = re.sub(r'<[^>]*>', '', clean_ai_msg)
api_history.append({"role": "user", "content": user_msg})
api_history.append({"role": "assistant", "content": clean_ai_msg})
# Append the last user message to fetch the assistant's reply
api_history.append({"role": "user", "content": last_user_message})
ai_response = get_ai_response(last_user_message, api_history)
history[-1] = (last_user_message, ai_response)
return history, history
# Modern CSS for a clean UI
custom_css = """
body { background-color: #1a1a1a; color: #ffffff; font-family: 'Arial', sans-serif; }
#chatbot { height: 80vh; background-color: #2d2d2d; border: 1px solid #404040; border-radius: 8px; }
input, button { background-color: #333333; color: #ffffff; border: 1px solid #404040; border-radius: 5px; }
button:hover { background-color: #404040; }
details { background-color: #333333; padding: 10px; margin: 5px 0; border-radius: 5px; }
summary { cursor: pointer; color: #70a9e6; }
.reasoning-content { padding: 10px; margin-top: 5px; background-color: #404040; border-radius: 5px; }
"""
with gr.Blocks(css=custom_css, title="DeepHermes 3 Llama 3 8B Preview Demo") as demo:
with gr.Column():
gr.Markdown("## DeepHermes 3 Llama 3 8B Preview Demo")
gr.Markdown("")
chatbot = gr.Chatbot(elem_id="chatbot", render_markdown=False, bubble_full_width=True)
with gr.Row():
message = gr.Textbox(placeholder="Type your message...", show_label=False, container=False)
# Make the button larger by using size "lg"
submit_btn = gr.Button("Send", size="lg")
clear_chat_btn = gr.Button("Clear Chat")
# State management for chat history
chat_state = gr.State([])
js = """
function() {
const observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.addedNodes.length) {
document.querySelectorAll('#chatbot .message:not(.processed)').forEach(msg => {
msg.classList.add('processed');
const content = msg.querySelector('.content');
if (content) {
content.innerHTML = content.textContent;
}
});
}
});
});
const chatbot = document.getElementById('chatbot');
if (chatbot) {
observer.observe(chatbot, { childList: true, subtree: true });
}
return [];
}
"""
# First, add the user message with a pending reply, then update it with the actual response.
submit_btn.click(
add_user_message,
[message, chat_state],
[chat_state, chatbot]
).then(
generate_response_from_history,
chat_state,
[chat_state, chatbot]
).then(
lambda: "", # Clear the input box after processing
None,
message
)
# Enable pressing Enter to submit
message.submit(
add_user_message,
[message, chat_state],
[chat_state, chatbot]
).then(
generate_response_from_history,
chat_state,
[chat_state, chatbot]
).then(
lambda: "",
None,
message
)
clear_chat_btn.click(
lambda: ([], []),
None,
[chat_state, chatbot]
)
# Load JavaScript to enable HTML rendering in chatbot messages
demo.load(
fn=lambda: None,
inputs=None,
outputs=None,
js=js
)
demo.queue()
demo.launch()
|