Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
from app_backend import fetch_weather, generate_synthetic_data, optimize_load | |
# Constants | |
API_KEY = "84e26811a314599e940f343b4d5894a7" | |
LOCATION = "Pakistan" | |
# Sidebar | |
st.sidebar.title("Smart Grid Dashboard") | |
location = st.sidebar.text_input("Enter Location", LOCATION) | |
# Fetch and display weather data | |
weather = fetch_weather(API_KEY, location) | |
if weather: | |
st.sidebar.write(f"Temperature: {weather['temperature']} °C") | |
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s") | |
st.sidebar.write(f"Weather: {weather['weather']}") | |
# Main dashboard with tabs | |
tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"]) | |
with tabs[0]: | |
st.title("Real-Time Smart Grid Dashboard") | |
# Generate synthetic data | |
data = generate_synthetic_data() | |
# Plot total consumption, grid generation, and storage usage | |
fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"], | |
title="Energy Consumption, Generation, and Storage Usage Over Time", | |
labels={"value": "Energy (kWh)", "variable": "Energy Source"}) | |
st.plotly_chart(fig) | |
# Grid health overview | |
st.subheader("Grid Health Overview") | |
grid_health_counts = data["grid_health"].value_counts() | |
st.bar_chart(grid_health_counts) | |
# Optimization recommendations | |
current_demand = data["total_consumption_kwh"].iloc[-1] | |
current_solar = data["solar_output_kw"].iloc[-1] | |
current_wind = data["wind_output_kw"].iloc[-1] | |
recommendation = optimize_load(current_demand, current_solar, current_wind) | |
st.subheader("Recommendations") | |
st.write(f"Current Load Demand: {current_demand} kWh") | |
st.write(f"Solar Output: {current_solar} kW") | |
st.write(f"Wind Output: {current_wind} kW") | |
st.write(f"Recommendation: {recommendation}") | |
with tabs[1]: | |
st.title("Energy Storage Overview") | |
# Total energy stored | |
total_storage = 500 # Example of total energy storage | |
st.subheader(f"Total Energy Stored: {total_storage} kWh") | |
# Energy storage contribution from different sources | |
st.subheader("Energy Storage Contributions") | |
energy_sources = pd.DataFrame({ | |
"Source": ["Wind", "Solar", "Turbine"], | |
"Energy (kW/min)": [5, 7, 10] | |
}) | |
st.bar_chart(energy_sources.set_index("Source")) | |
# Show energy storage status with a rounded circle | |
st.subheader("Energy Storage Circle") | |
st.markdown("Energy storage is a combination of contributions from different renewable sources.") | |
# Visualization of energy storage circle using Plotly | |
storage_data = { | |
"Source": ["Wind", "Solar", "Turbine"], | |
"Energy": [5, 7, 10], | |
} | |
storage_df = pd.DataFrame(storage_data) | |
fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources") | |
st.plotly_chart(fig) | |
with tabs[2]: | |
st.title("Energy Trading Overview") | |
# Energy cubes | |
st.subheader("Energy Cubes Stored") | |
energy_cubes = pd.DataFrame({ | |
"Country": ["China", "Sri Lanka", "Bangladesh"], | |
"Energy (kWh)": [100, 200, 300], | |
"Shareable": [True, True, False] | |
}) | |
# Displaying the energy cubes in a grid | |
st.write("Stored energy can be shared with other countries.") | |
st.dataframe(energy_cubes) | |
# Visualization of energy that can be shared | |
st.subheader("Energy Trading Visualization") | |
st.markdown("The following energy amounts are available for sharing with different countries.") | |
trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading") | |
st.plotly_chart(trading_fig) | |