rehanafzal's picture
Update app.py
5ba3d08 verified
raw
history blame
23.9 kB
# import streamlit as st
# import pandas as pd
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main dashboard with tabs
# tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"])
# with tabs[0]:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Plot total consumption, grid generation, and storage usage
# fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
# title="Energy Consumption, Generation, and Storage Usage Over Time",
# labels={"value": "Energy (kWh)", "variable": "Energy Source"})
# st.plotly_chart(fig)
# # Grid health overview
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# st.bar_chart(grid_health_counts)
# # Optimization recommendations
# current_demand = data["total_consumption_kwh"].iloc[-1]
# current_solar = data["solar_output_kw"].iloc[-1]
# current_wind = data["wind_output_kw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.subheader("Recommendations")
# st.write(f"Current Load Demand: {current_demand} kWh")
# st.write(f"Solar Output: {current_solar} kW")
# st.write(f"Wind Output: {current_wind} kW")
# st.write(f"Recommendation: {recommendation}")
# with tabs[1]:
# st.title("Energy Storage Overview")
# # Total energy stored
# total_storage = 500 # Example of total energy storage
# st.subheader(f"Total Energy Stored: {total_storage} kWh")
# # Energy storage contribution from different sources
# st.subheader("Energy Storage Contributions")
# energy_sources = pd.DataFrame({
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy (kW/min)": [5, 7, 10]
# })
# st.bar_chart(energy_sources.set_index("Source"))
# # Show energy storage status with a rounded circle
# st.subheader("Energy Storage Circle")
# st.markdown("Energy storage is a combination of contributions from different renewable sources.")
# # Visualization of energy storage circle using Plotly
# storage_data = {
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy": [5, 7, 10],
# }
# storage_df = pd.DataFrame(storage_data)
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
# st.plotly_chart(fig)
# with tabs[2]:
# st.title("Energy Trading Overview")
# # Energy cubes
# st.subheader("Energy Cubes Stored")
# energy_cubes = pd.DataFrame({
# "Country": ["China", "Sri Lanka", "Bangladesh"],
# "Energy (kWh)": [100, 200, 300],
# "Shareable": [True, True, False]
# })
# # Displaying the energy cubes in a grid
# st.write("Stored energy can be shared with other countries.")
# st.dataframe(energy_cubes)
# # Visualization of energy that can be shared
# st.subheader("Energy Trading Visualization")
# st.markdown("The following energy amounts are available for sharing with different countries.")
# trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
# st.plotly_chart(trading_fig)
# code 2
# import streamlit as st
# import pandas as pd
# import plotly.graph_objects as go
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# DEFAULT_LOCATION = "Pakistan"
# # Sidebar for location and weather data
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main interface
# st.title("Real-Time Smart Grid Dashboard")
# # Tabs
# tabs = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])
# # Home Tab
# with tabs[0]:
# st.header("Overview: Power and Energy Usage")
# # Fetch synthetic data
# data = generate_synthetic_data()
# # Line Graph for Power Consumption, Generation, and Storage
# fig = go.Figure()
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["total_power_consumption_mw"],
# mode='lines',
# name="Total Power Consumption (MW)",
# line=dict(color="red")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["grid_generation_mw"],
# mode='lines',
# name="Grid Generation (MW)",
# line=dict(color="green")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["storage_utilization_mw"],
# mode='lines',
# name="Storage Utilization (MW)",
# line=dict(color="blue")
# ))
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
# st.plotly_chart(fig)
# # Storage Tab
# with tabs[1]:
# st.header("Energy Storage Overview")
# storage_data = generate_storage_data()
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# # Circular storage breakdown
# sources = ["Wind", "Solar", "Turbine"]
# values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]]
# fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)])
# fig.update_layout(title="Energy Storage Breakdown")
# st.plotly_chart(fig)
# # Electricity Trade Management Tab
# with tabs[2]:
# st.header("Electricity Trade Management")
# # Sample trade data
# trade_data = {
# "Country": ["Srilanka", "China", "Bangladesh"],
# "Energy Exported (MW)": [50, 30, 70],
# "Energy Imported (MW)": [20, 40, 10],
# }
# trade_df = pd.DataFrame(trade_data)
# st.subheader("Trade Details")
# st.write(trade_df)
# # Visualization
# fig = go.Figure()
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
# fig.update_layout(title="Energy Trade", barmode='group')
# st.plotly_chart(fig)
# code 3
# import streamlit as st
# import pandas as pd
# import plotly.graph_objects as go
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# DEFAULT_LOCATION = "pakistan"
# # Sidebar for location and weather data
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main interface
# st.title("Real-Time Smart Grid Dashboard")
# # Tabs
# tabs = st.tabs(["Home", "Storage", "Electricity Trade Management"])
# # Home Tab
# with tabs[0]:
# st.header("Overview: Power and Energy Usage")
# # Fetch synthetic data
# data = generate_synthetic_data()
# # Line Graph for Power Consumption, Generation, and Storage
# fig = go.Figure()
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["total_power_consumption_mw"],
# mode='lines',
# name="Total Power Consumption (MW)",
# line=dict(color="red")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["grid_generation_mw"],
# mode='lines',
# name="Grid Generation (MW)",
# line=dict(color="green")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["storage_utilization_mw"],
# mode='lines',
# name="Storage Utilization (MW)",
# line=dict(color="blue")
# ))
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
# st.plotly_chart(fig)
# # Grid Health Indicator
# # # Grid health overview
# # st.subheader("Grid Health Overview")
# # grid_health_counts = data["grid_health"].value_counts()
# # st.bar_chart(grid_health_counts)
# st.subheader("Grid Health Status")
# grid_health = "Stable" if data["grid_generation_mw"].mean() >= data["total_power_consumption_mw"].mean() else "Critical"
# st.write(f"**Grid Health:** {grid_health}")
# # AI Recommendations
# st.subheader("AI Recommendations")
# recommendations = [
# "Increase solar panel efficiency by 10% for peak hours.",
# "Optimize wind turbine alignment based on real-time wind data.",
# "Store excess energy during low-demand periods for future use.",
# "Improve grid stability by distributing load dynamically across sectors.",
# ]
# for rec in recommendations:
# st.write(f"- {rec}")
# # Storage Tab
# with tabs[1]:
# st.header("Energy Storage Overview")
# storage_data = generate_storage_data()
# # Individual Circles for Wind, Solar, and Turbine
# st.subheader("Energy Contributions")
# col1, col2, col3 = st.columns(3)
# with col1:
# st.metric("Wind Energy", f"{storage_data['wind']} MW/min")
# with col2:
# st.metric("Solar Energy", f"{storage_data['solar']} MW/min")
# with col3:
# st.metric("Turbine Energy", f"{storage_data['turbine']} MW/min")
# # Central Grid Storage Visualization
# st.subheader("Total Energy Stored in Grid")
# fig = go.Figure()
# fig.add_trace(go.Scatter(x=[0], y=[0], mode='markers+text', text=["Grid"], marker=dict(size=70, color="blue")))
# fig.add_trace(go.Scatter(
# x=[-1, 1, 0],
# y=[1, 1, -1],
# mode='markers+text',
# text=["Wind", "Solar", "Turbine"],
# marker=dict(size=50, color=["green", "yellow", "orange"])
# ))
# fig.add_trace(go.Scatter(
# x=[-0.5, 0.5, 0],
# y=[0.5, 0.5, -0.5],
# mode="lines",
# line=dict(width=3, color="gray"),
# ))
# fig.update_layout(
# title="Energy Storage Visualization",
# xaxis=dict(visible=False),
# yaxis=dict(visible=False),
# showlegend=False
# )
# st.plotly_chart(fig)
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# # Electricity Trade Management Tab
# with tabs[2]:
# st.header("Electricity Trade Management")
# # Sample trade data
# trade_data = {
# "Country": ["Country A", "Country B", "Country C"],
# "Energy Exported (MW)": [50, 30, 70],
# "Energy Imported (MW)": [20, 40, 10],
# }
# trade_df = pd.DataFrame(trade_data)
# st.subheader("Trade Details")
# st.write(trade_df)
# # Visualization
# fig = go.Figure()
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
# fig.update_layout(title="Energy Trade", barmode='group')
# st.plotly_chart(fig)
# code 4
# import streamlit as st
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# import pandas as pd
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7" # Replace with your OpenWeather API key
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# st.sidebar.subheader("Weather Information")
# if weather:
# st.sidebar.write(f"**Temperature**: {weather['temperature']} °C")
# st.sidebar.write(f"**Wind Speed**: {weather['wind_speed']} m/s")
# st.sidebar.write(f"**Weather**: {weather['weather']}")
# # Main tabs
# tab1, tab2, tab3 = st.tabs(["Home", "Power Storage", "Power Trading management"])
# # Home Tab
# with tab1:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Show weather at top
# if weather:
# st.write(f"### Location: {location}")
# st.write(f"Temperature: {weather['temperature']} °C | Wind Speed: {weather['wind_speed']} m/s | Weather: {weather['weather']}")
# # Power consumption graph
# fig = px.line(
# data,
# x="timestamp",
# y=["power_consumption_mw", "generation_mw", "storage_usage_mw"],
# labels={"value": "Power (MW)", "variable": "Metric"},
# title="Power Flow Over Time"
# )
# fig.update_traces(mode="lines+markers")
# st.plotly_chart(fig)
# # Grid health as bar chart
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# fig_health = px.bar(
# grid_health_counts,
# x=grid_health_counts.index,
# y=grid_health_counts.values,
# labels={"x": "Grid Status", "y": "Count"},
# title="Grid Health Status"
# )
# st.plotly_chart(fig_health)
# # AI recommendations
# st.subheader("AI Recommendations")
# current_demand = data["power_consumption_mw"].iloc[-1]
# current_solar = data["solar_output_mw"].iloc[-1]
# current_wind = data["wind_output_mw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.write(f"**Current Load Demand**: {current_demand} MW")
# st.write(f"**Solar Output**: {current_solar} MW")
# st.write(f"**Wind Output**: {current_wind} MW")
# st.write(f"**Recommendation**: {recommendation}")
# # Storage Tab
# with tab2:
# st.title("Energy Storage Status")
# # Pie chart of energy percentage contribution
# storage_data = {
# "Wind": data["wind_output_mw"].mean(),
# "Solar": data["solar_output_mw"].mean(),
# "Turbine": data["turbine_output_mw"].mean()
# }
# fig_pie = px.pie(
# names=storage_data.keys(),
# values=storage_data.values(),
# title="Energy Contribution by Resource"
# )
# st.plotly_chart(fig_pie)
# # Circle visualization for storage
# st.subheader("Total Energy Stored")
# total_storage = sum(storage_data.values())
# st.write(f"**Total Energy Stored**: {total_storage:.2f} MW")
# st.markdown(
# """
# <div style="display: flex; justify-content: center; align-items: center; flex-direction: column;">
# <div style="width: 150px; height: 150px; border-radius: 50%; background-color: #FFDD00; display: flex; justify-content: center; align-items: center; font-size: 24px; font-weight: bold; margin-bottom: 20px;">
# {total_storage:.2f} MW
# </div>
# <div style="display: flex; gap: 50px;">
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #0073FF; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;">
# Wind<br>{storage_data["Wind"]:.2f} MW
# </div>
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #FF5733; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;">
# Solar<br>{storage_data["Solar"]:.2f} MW
# </div>
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #28B463; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;">
# Turbine<br>{storage_data["Turbine"]:.2f} MW
# </div>
# </div>
# </div>
# """,
# unsafe_allow_html=True
# )
# # Trading Tab
# with tab3:
# st.title("Electricity Trade Management")
# st.write("Under development...")
# code 5
# import streamlit as st
# import pandas as pd
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Tabs
# tab_home, tab_storage, tab_trading = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])
# # Home Tab
# with tab_home:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Grid Health
# # st.subheader("Grid Health Overview")
# # grid_health_counts = data["grid_health"].value_counts()
# # st.bar_chart(grid_health_counts)
# # Power Consumption, Generation & Storage Graph
# st.subheader("Power Consumption, Generation & Storage")
# fig = px.line(data, x="timestamp", y=["load_demand_kwh", "solar_output_kw", "wind_output_kw"],
# title="Power Consumption, Generation & Storage", labels={"value": "Power (MW)"})
# fig.update_traces(line=dict(width=2))
# st.plotly_chart(fig)
# # Grid Health
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# st.bar_chart(grid_health_counts)
# # Optimization Recommendations
# current_demand = data["load_demand_kwh"].iloc[-1]
# current_solar = data["solar_output_kw"].iloc[-1]
# current_wind = data["wind_output_kw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.subheader("Recommendations")
# st.write(f"Current Load Demand: {current_demand} MW")
# st.write(f"Solar Output: {current_solar} MW")
# st.write(f"Wind Output: {current_wind} MW")
# st.write(f"Recommendation: {recommendation}")
# # Storage Tab
# with tab_storage:
# st.title("Energy Storage Overview")
# # Energy Contribution by Resources
# st.subheader("Energy Contribution Percentage by Resources")
# energy_data = {
# "Wind": 5,
# "Solar": 7,
# "Turbine": 10
# }
# energy_df = pd.DataFrame(list(energy_data.items()), columns=["Source", "Energy (MW)"])
# fig = px.pie(energy_df, values="Energy (MW)", names="Source", title="Energy Contribution by Resources")
# st.plotly_chart(fig)
# # Energy Storage Merge
# st.subheader("Total Energy Stored")
# st.write("Energy stored from all sources:")
# energy_stored = sum(energy_data.values())
# st.write(f"Total Energy Stored: {energy_stored} MW")
# st.write("Energy sources merged into total energy storage:")
# st.write(f"Total Energy Stored in Grid: {energy_stored} MW")
# # Trading Tab
# with tab_trading:
# st.title("Electricity Trade Management")
# # Simulating Electricity Trade (Energy cubes & trading)
# st.subheader("Energy Trade Overview")
# energy_trade = {
# "USA": 50,
# "Germany": 40,
# "India": 30
# }
# trade_df = pd.DataFrame(list(energy_trade.items()), columns=["Country", "Energy (MW)"])
# fig = px.bar(trade_df, x="Country", y="Energy (MW)", title="Energy Trading Overview")
# st.plotly_chart(fig)
# st.write("Energy cubes available for trading:")
# st.write("The system can trade energy with other countries.")
# code 6
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
from app_backend import fetch_data, generate_recommendations, grid_health_status, generate_trading_options
# Dashboard layout
st.title('Real-Time Smart Grid Application Dashboard')
st.sidebar.title('Navigation')
tabs = ['Home', 'Energy Storage', 'Electricity Trade Management']
selected_tab = st.sidebar.radio('Choose Tab', tabs)
# Fetch data and prepare visualizations
data = fetch_data()
if selected_tab == 'Home':
st.header('Home - Real-Time Data Overview')
# Current weather and grid information
st.subheader("Location Weather Data")
st.write(f"Temperature: {data['temperature']} °C")
st.write(f"Wind Speed: {data['wind_speed']} m/s")
st.write(f"Weather: {data['weather_condition']}")
# Real-Time Power Flow Visualization (with dynamic chart)
st.subheader("Real-Time Power Flow Visualization")
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['timestamps'], y=data['total_consumption'], mode='lines', name='Total Consumption (MW)', line=dict(color='red')))
fig.add_trace(go.Scatter(x=data['timestamps'], y=data['grid_generation'], mode='lines', name='Grid Generation (MW)', line=dict(color='green')))
fig.add_trace(go.Scatter(x=data['timestamps'], y=data['storage_usage'], mode='lines', name='Storage Usage (MW)', line=dict(color='blue')))
fig.update_layout(title="Power Flow", xaxis_title="Time", yaxis_title="Power (MW)")
st.plotly_chart(fig)
# Grid Health Status
st.subheader("Grid Health Indicators")
health_status = grid_health_status(data)
st.write(health_status)
# AI Recommendations
st.subheader("AI Recommendations")
recommendations = generate_recommendations(data)
for rec in recommendations:
st.write(rec)
elif selected_tab == 'Energy Storage':
st.header('Energy Storage Overview')
# Storage Contribution Chart
st.subheader("Energy Storage Contribution by Resources")
fig = go.Figure()
fig.add_trace(go.Pie(labels=['Solar', 'Wind', 'Hydro'], values=[data['solar_storage'], data['wind_storage'], data['hydro_storage']], hole=0.3))
fig.update_layout(title="Energy Storage Contribution")
st.plotly_chart(fig)
# Total Energy Storage with Circle Representation
st.subheader("Total Energy Storage Representation")
fig = go.Figure()
fig.add_trace(go.Scatterpolar(r=[data['solar_storage'], data['wind_storage'], data['hydro_storage']], theta=['Solar', 'Wind', 'Hydro'], fill='toself', name='Energy Sources'))
fig.add_trace(go.Scatterpolar(r=[data['total_storage']], theta=['Total Storage'], fill='none', mode='text+markers', text=['Total Storage'], textposition='center', marker=dict(size=15, color='purple')))
fig.update_layout(title="Energy Storage and Total", polar=dict(radialaxis=dict(visible=True)), showlegend=False)
st.plotly_chart(fig)
elif selected_tab == 'Electricity Trade Management':
st.header('Electricity Trade Management')
# Display available energy for trade
st.subheader("Energy Trade Availability")
trading_options = generate_trading_options(data)
st.write(trading_options)